WATER (AND CHEMISTRY) IN THE SOLAR SYSTEM

A GT-KP planetary program proposed for Herschel

R. Moreno (Obs. Paris) , P. Hartogh, E. Lellouch, J. Crovisier and the HIFI Solar System Team

December 14th, 2006

Science Objectives and Goals

The Martian water cycle and atmospheric chemistry
Origin of water in the upper atmospheres of the outer planets
Excitation of water in comets
The D/H ratio and minor species
Water in distant comets

Water in the Martian Atmosphere

Water cycle: Measurement of the vertical profile function of solar longitude (Ls) with HIFI. Variable hygropause from ground-based low quality measurements, cut off at 10 km at aphelion and 50 km at perihelion. If true, strong impact on general circulation, water transport and chemistry: TBC by HIFI

From Clancy etal (1996)

Water in the Martian Atmosphere

On Mars, the H₂O *column density* measured from Orbiter is strongly variable with seasons and latitudes. BUT, in the IR, the low spectral resolution do not allows to resolve lines

With HIFI, the H_2O vertical profile will be easily determined Example of H_2O at 557 GHz from SWAS (Gurwell *etal* 2000)

Chemistry in the Martian Atmosphere

History of Martian atmosphere: Isotopic measurements : D/H about 5 times higher & ¹⁸O/¹⁶O about 10% and ¹⁷O/¹⁶O about 5 % lower than on Earth. TBC by HIFI, i.e. observe CO, O₂ and O₃

- HO_x-chemistry: H₂O, OH, HO₂, H₂O₂: confirm expected anti-correlation with O₃
- Chemistry: Search for minor components possibly based on PACS survey and moderate deep line survey in bands 4 and 5

HIFI Time Estimation (35.7h)

- Bands 1,4,5 and 6 (S/N = 100): O_2 , H_2O_2 , CO, ¹³CO and $3xH_2O=28$ observations of 0.5h = **14h**
- ♦ Bands 5 (S/N = 100):
 - 2 lines of: HDO, $H_2^{18}O$, $H_2^{17}O$, OH = 8 obs.
 - 1 line of: HO_2 , $C^{18}O$, $C^{17}O$ and 3 other species = 6 observations, i.e. 14 observations of 0.5h = **7h**
 - 2x(seasonal) O_{3} , each observation of 4h = 8h
- Bands 4 and 5 Survey (S/N = 10-100): 0.7h
- PACS survey: 6H

Origin of water in outer planets

 HIFI access only to upper atmospheric water in giant planets, since the continuum at ~1 bar, absorbs submm radiation and do not allows to probe the internal water located deeper (5-50 bar)

External sources required in order to explain the column amount found by ISO:

Permanent Interplanetary **D**ust **P**article flux (IDP) Local sources (rings, satellites)

cometary collisions (SL9)

 Impacts on transport and ionization of gas/solid material in planetary magnetospheres, frequency of cometary collision events

December 14th, 2006

Science Goals of the Program

- Improve accuracy of discaverage water abundances to better characterize the budget of input fluxes
- Determine accurate vertical profiles: helps to discriminate between the different external sources
- Map latitudinal distribution of water at Jupiter: a maximum at poles imply satellites sources connected via magnetic field

Strategy and Target Lines

- Observe 1 to 3 water lines with different strength during different seasons (4 times, i.e. once a year for variability study)
- Complementary observations: perform full spectral scans with PACS and SPIRE
- Map at shortest wavelength 5 latitudinal points on disc and 4 limbs of Jupiter in order to separate SL9 from possible polar sources

Outer Planet Time Estimation

Jupiter (18.6H)

Instrument	Frequency	Time (h)	S/N	Repeat	Goal/Strategy
HIFI	557	0.2	100	4	H ₂ 0 Vertical distribution
HIFI	1097	0.2	100	4	
HIFI	1670	1*9	100	1	9 point map
PACS	2640	0.5	100	4	5x5 map
PACS	Full range	6	100	1	Explore

Saturn (14H)

Outer Planet Time Estimation

Uranus & Neptune (2x38=76H)

Titan (31.5H)

Instrument	Frequency	Time (h)	S/N	Repeat	Goal/Strategy
HIFI	1097	3	10	4	H ₂ 0 Vertical distribution
PACS	2640	3.5	100	1	Time variation
PACS	Full range	6	100	1	Explore
SPIRE	Full range	10	100	1	Explore + PH ₃

Outer Planet Time Estimation

18.6+14+38+38+31.5 = **140.1** hours (HIFI = 78.6, PACS = 43.5, SPIRE = 18)

HIFI Planets Time Estimation (total) 35.7h + 140.1h =

Water in Comets

Investigation of water excitation (HIFI SPIRE PACS)

- Measurement of the D/H ratio (from HDO) (HIFI)
- Water in a sample of weak comets (HIFI)

Constrain water excitation and physical conditions of comets

HIFI and SPIRE: Measure several water lines simultaneously over whole spectral range. Monitor the water production rate Q=f(Rh) for bright comet TOO (HIFI)

Measure asymmetric outgassing, velocity offsets, self absorption and observing lines of different excitation (transitions, map), ortho-to-para ratio

 Constrains: Temperature and velocity profiles(r), collision rates (electrons, neutrals), role of water radiative cooling in the coma thermodynamics

 3-4 comets : 22P/Kopf, 103P/Hartley 2, TOO (x2) Time estimation: = 46 h

HDO: search for D/H in Comets

 High priority: measure D/H for the first time in a Jupiter-family comets to constrain comet material origin (e.g. 103P/Hartley 2 : SNR ~ 10 in 10h)

Search for minor species together with H_2O : NH_3 , or H_2O -18 and HNC

2 comets : 103P/Hartley 2, TOO Time estimation: = 32 h

December 14th, 2006

Search for water in weakly active objects

 Short period comet: part of CO from the ice grains in extended source. Such grains could be a source of water
 -> 557 GHz water vapor

Figure 8: The 1_{10} - 1_{01} lines of H¹⁶₂O (left) and H¹⁸₂O (right) observed in comet 153P/2002 C1 (Ikeya-Zhang) on 24–28 April 2002 by Odin. (From Lecacheux et al. 2003.)

 Near Earth Objects (NEOs): extinct of dormant comets? Activity?

1 comet : 29P/Schwassmann-Wachmann 1 Time estimation: 3 h

HIFI Comets Time Estimation (total) 46h + 32h + 3h + 20h =

HIFI Solar System Time Estimation

176h + 101h =

Science Demonstration Phase

 Detection of water lines on a planet and a comet visible during this phase, with HIFI, PACS and SPIRE