

ISO and AKARI: paving the road to Herschel

Alberto Salama

ISO and AKARI ESA Project Scientist

ISO Data Centre
European Space Astronomy Centre (ESAC)

14-15 December 2006

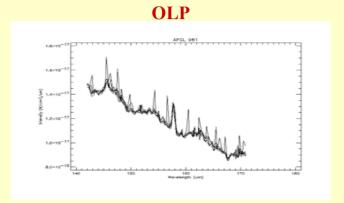
ISO

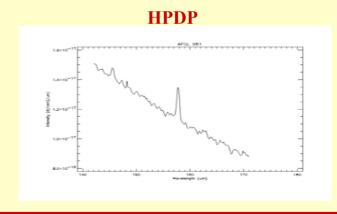
- What's new with ISO?
 - Highlights of Active Archive Phase (2002 2006)

ISO Data Archive improvements

- Improved data products
 - Systematic (interactive) processing of 1/3 of standard observations, including catalogues and atlases.
- Improved data characterisation
 - Data Quality Reports
- Better user interface, including
 - Improved interoperability with other archives
 - Object type queries
- Integration into Virtual Observatory
 - Direct involvement in VO science demos

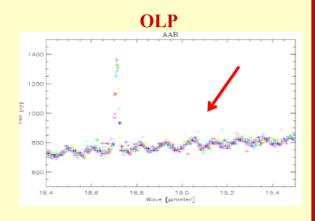
Version 6.0 (24/Jul/2003): HPDPs

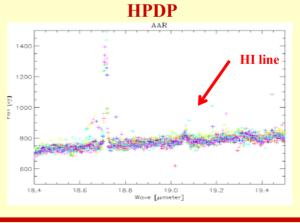

(Highly Processed Data Products)


- ☐ Facility for continuous ingestion of systematic processing of selected observing modes or class of objects
- ☐ Products improved systematically `by-hand'
 - via Interactive Analysis or improved algorithms, to correct for residual instrumental artefacts still present in the pipeline data.
- Data, catalogues, atlases

Uniformly processed LWS01 spectra

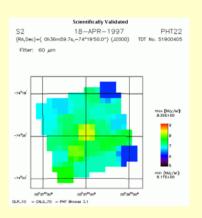
- ✓ Deglitching
- ✓Better wavelength assignment
- ✓ Remaining drift correction
- ✓ Averaging of scans
- ✓ Correction for the NIR-leak
- ✓ Correction for the SW1 double peak feature
- ✓ Defringing
- ✓ Assignment of quality flags





High resolution processed and defringed SWS01

- ✓ Applicable to ~ 300 AOT1s-full grating scan at reduced resolution
- ✓ Processing brings spectra back to instrument resolution
- ✓ Defringed
- ✓ Provide the opportunity to extract bulk spectral and noise information from data-products



- ✓ Drift correction
- ✓ Transient correction
- ✓ Empirical correction for systematic trends
- ✓ Background determination
- ✓ Flux extraction
- ✓ Compilation of a catalogue

From a map to a catalogue with final photometric values

Object name	Ohiect tyne	TSO name	TDTNUM ON	On Meas.#	RA(2000)	DEC(2000)	Detector	Wavelength	micron Enoch	TOTNUM OFF	Off Meas #	# Flux density [Tvl Flux uncertain	tv [Tv] Background [M]	[v/sr] Detection [si	amal Ohiect size	Ouality
[GB98] SO2	Star	S2	51900405	01	0.616583334	-74.330527778	C1	60	18-APR-1997	51900405	N1	0.088	0.017	6.9	7.0	р	R1
[GB98] S09	Star	S9	53300720	01	0.835750000	-73.524750000	C1	60		53300720	01	0.08	0.011	12.3	2.5	P	R9
[GB98] S13	Star	S13	75000401	01	0.849583333		C1	60	4-DEC-1997	75000401	01	0.232	0.024	8.3	12.9	P	R9
[GB98] S13	Star	S13	75000331	01	0.849583333	-73.861916667	C1	100	4-DEC-1997	75000331	01	0.184	0.016	7.3	7.3	P	R9
[GB98] S13	Star	S13	85901135	01	0.849583333	-73.861916667	C2	200			01	0.0050	0.02	7.8	-0.1	P	R6R10R12R13
[GB98] S16	Star	S16	51901737	01	0.951361111	-73.587222222	C1	60	18-APR-1997	51901737	01	0.027	0.0050	7.0	2.0	P	R1
[GB98] S22	V*	S22	53300849	01	1.150555556		C1	60	2-MAY-1997	53300849	01	0.0070	0.0090	7.2	1.0	P	R1
[GB98] S23	Star	S23	51901852	01	1.175777778	-73.084750000	C1	60	18-APR-1997		01	0.0070	0.0080	8.0	0.9	Р	R1
IRAS 04374-6831	Star	PSC04374-6831	66300936	01	4.623000000		C1	60	9-SEP-1997	66300936	01	0.025	0.0070	7.8	2.3	P	R1
IRAS 04407-7000	Star	PSC04407-7000	56702037	01	4.67455555		C1	60	5-JUN-1997	56702037	01	0.064	0.013	7.4	4.4	P	R1
IRAS 04496-6958	C*	IRAS04496-6958	86800502	01	4.821833333	-69.887222222	C1	60	1-APR-1998	86800502	01	0.023	0.0090	7.0	2.5	P	R1
IRAS 04545-7000	Star	PSC04545-7000	56701440	01	4.902750000	-69.932722222	C1	60	5-JUN-1997	56701440	01	0.124	0.019	9.5	3.6	P	R9
IRAS 05146+2521	V*	05146+2521	68801094	01	5.295388889	25.416388889	C2	200	4-0CT-1997	68801094	01	0.155	0.329	40.3	0.0	P	R8R13
SV* HV 2446	V*	HV2446	58401843	01	5.333750000	-67.578666667	C1	60		58401843	01	0.023	0.01	9.7	1.0	P	R1.
IRAS 05289-6617	C*	PSC05289-6617	63003745	01	5.484055556	-66.258583333	C1	60	7-AUG-1997	63003745	01	0.142	0.015	7.8	7.3	P	R10
IRAS 05402-6956	Star	PSC05402-6956	62401648	01	5.662583333	-69.921527778	C1	60	1-AUG-1997	62401648	01	0.182	0.083	35.6	1.4	Р	R9
IRAS 07486-7753	Mi ra	07486-7753	73501601	01	7.776583334	-78.018777778	C2	200	20-NOV-1997	73501601	01	0.064	0.107	14.3	0.0	P	R8R13
IRAS 08478-7919	Star	08478-7919	73501809	01	8.765694444		C2	200		73501809	01	0.377	0.075	12.7	0.0	P	R8
IRAS 10283-8048	Star	10283-8048	67404231	01	10.470166667	-81.059472222	C2	200	20-SEP-1997		01	0.042	0.045	7.7	0.0	P	R8R13
OH359.508+0.179	Mira	OH359.508+0.179	50401333	01	17.729083334	-29.262250000	C1	60		50401333	01	12.346	3.586	1745.9	2.1	P	R9R10
OH359.513+0.174	Mira	OH359.513+0.174	49800630	01	17.729611111		C1	60		49800630	01	11.623	4.027	1987.5	2.0	Р	R9
OH359.889+0.361	Mira	OH359.889+0.361	48502533	01	17.732472223		C1	60		48502533	01	2.481	0.438	651.1	1.7	P	R10
OHO.019+0.345	Mira	OHO.019+0.345	49402145	01	17.738638889	-28.739361111	C1	60		49402145	01	2.713	0.523	729.2	2.4	Р	R1
OH359.943+0.260	Mira	OH359.943+0.260	48502436	01	17.741138889	-28.848888889	C1	60	15-MAR-1997		01	-0.082	0.673	893.4	-0.3	Р	R1
OH359.800+0.165	Mira	OH359.800+0.165	49801418	01	17.741666667		C1	60	28-MAR-1997		01	-0.08	3.26	1426.4	0.2	P	R9R10
OH359.899+0.222	OH/IR	OH359.899+0.222	31802061	01	17.741888889	-28.906750000	C1	60	30-SEP-1996		01	4.235	1.225	974.8	2.8	P	R10
OH359.890+0.155	Mira	OH359.890+0.155	48502109	01	17.745805556	-28.949388889	C1	60	15-MAR-1997		01	7.542	3.498	1363.8	3.8	P	R1
OH359.783-0.392	Mira	OH359.783-0.392	50800648	01	17.777222222	-29.325416667	C1	60	7-APR-1997	50800648	01	6.925	3.583	1779.6	1.2	P	R9
OHO.096-0.427	OH/IR	OHO.096-0.427	48501806	01	17.791916667	-29.076000000	C1	60	15-MAR-1997	48501806	01	3.506	1.018	918.1	1.6	Р	R1
OHO.495-0.211	OH/IR	OH0.495-0.211	50801193	01	17.79355555	-28.623166667	C1	60		50801193	01	18.851	2.701	1716.0	3.4	P	R10
OHO.523-0.206	Mira	OHO.523-0.206	49400990	01	17.794333333	-28.596027778	C1	60	24-MAR-1997	49400990	01	3.501	0.875	1792.4	0.5	P	R1

HPDPs now in the ISO Data Archive

CAM photometry of faint 6.7 um sources in the SSA13 field ISOCAM 12 micron Atlas of Bright Spiral Galaxies

Mid-IR Spectro Imaging ISOCAM CVF Observations

CAM CVF spectra of the circumstellar environment of YSO

Uniformly processed LWS L01 spectra

LWS Observations of Asteroids

An atlas of SWS+LWS spectra of galactic HII regions

LWS01 corrected for near IR leak

The ISO-SWS Post-He Atlas of Near-IR Stellar Spectra
SWS observations of Asteroids and Planetary Satellites
High resolution processed and defringed SWS01s
A uniform database of SWS 2.4-45.4 micron spectra

HPDPs now in the ISO Data Archive

ISOPHOT Observations of compact sources at 3.6 um

Far-infrared ISOPHOT scans of compact objects

Far-Infrared ISOPHOT minimaps of solar-system objects

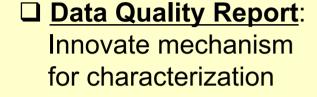
ISOPHOT C200 chopped observations of compact objects

Far-infrared ISOPHOT minimaps of normal stars

Far-Infrared ISOPHOT minimaps of miscellaneous objects

Far-Infrared ISOPHOT minimaps of evolved objects

Far-infrared ISOPHOT minimaps of extragalactic objects


PHT chopped mode spectroscopy processing

PHT mini-map photometry processing

An Atlas of PHT 2.5-12 micron spectra of Normal Galaxies

Version 7.0 (08/Jun/2004): DQRs

- ✓ Compile all info
- ✓ html file ("linkable")

of observations.

✓ looking at the future (VO)

Data Quality Report

Observation number: 791002040

Observation flags:

Incomplete Raster Maps

Pipeline data reduction flags and caveats:

Signals not stable

Check Related File

FCS signal not stable

Check Related File

Caveats

Highly Processed Data Products are the result of further processing beyond the pipeline and/or using new, refined algorithms for which some of the pipeline data reduction flags and caveats may no longer be applicable:

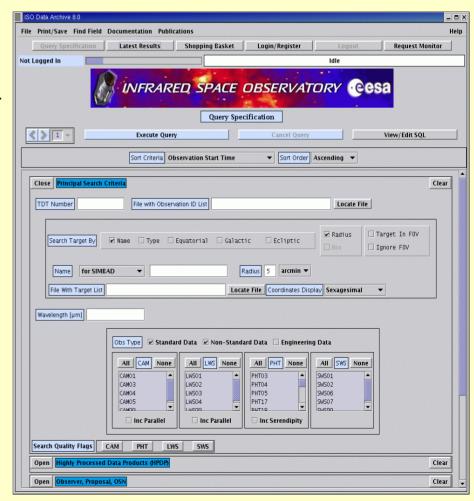
Recommended HPDP (Default Dataset)

No Highly Processed Data Products for this observation.

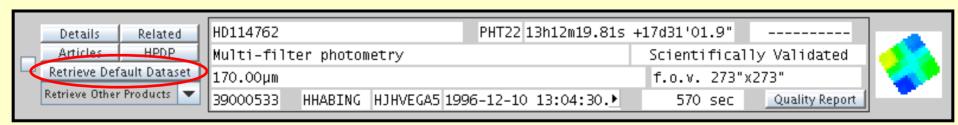
Comments:

This map is affected in the following way:

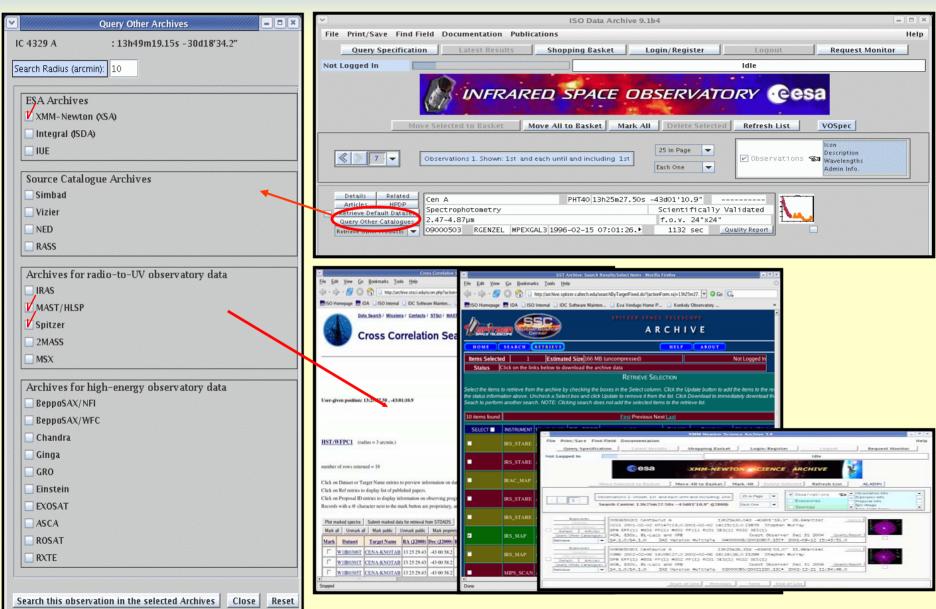
- Partial saturation due to bright areas insight the map occur for 4 raster positions (377, 378, 383, 384) with up to 42%. As this map is performed on the SMC with bright regions, saturation events are expected.
- 2) An on-target flag jitter occurs on raster positions 29, 277, 317, 341, 352, 368, 390. Loss of ramps is minimal (at maximum 4 out of 15). No problem.
- 3) On raster position 234 a huge glitch hits pixel 4. This leads for several raster points to unusable ramps for this pixel. It looses its reset level (up to +0.5 V!) which leads on many subsequent raster points to partially saturated ramps. The signals of this pixel should be considered as unreliable (and noisy!). The pixel does not recover any more, though towards the end of this map some raster points with nominal reset levels are found; this may be due to partial curing after passage of the bright spot at around raster position 380. After interrupt of the exposure and start of the second FCS measurement, the pixel shows nominal signals (as compared to the 1st FCS measurement) and the reset level is nominal, though slightly increased w.r.t. the neighbouring pixels. Pixel 4 does not show normally such an erratic behaviour (this is attributed to pixel 1) and in the course of quality analysis this hit is a really unique event. 41.5% of the data taken with this pixel are doubtful. As the map has nearly no redundancy (only 20% overlap from different raster points) 10% of the total map is affected.
- 4) The orientation of the array (3 deg. w.r.t. N) is different from the orientation of the raster (225 deg. w.r.t. N). Therefore, it is expected that the map shows holes, which amount to about 15% of the total map area.


Version 8.0 (10/May/2005)

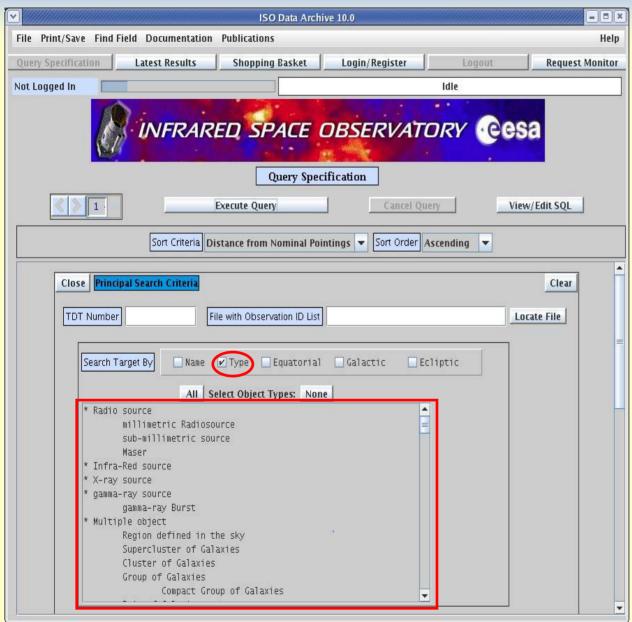
□ Bring IDA in line with other ESA Archives


- ✓ More flexible User Interface and easier maintenance for IDA in the future
- ✓Incorporates new functionalities developed for other archives at ESAC (XMM-Newton, Planetary Science,...)

Version 9.0 (27/Jul/2005): Default Dataset


- ☐ The "Default Dataset" can be: The best Highly Processed Data Products (HPDP) associated to the observation or the Off-Line Processing Pipeline v10.1 products.
- ☐ Survey products, icon and postcards created from the HPDP
- ☐ Data Quality Reports sorted to include best HPDP info

Version 9.1 (15/Mar/2006): Query other archives

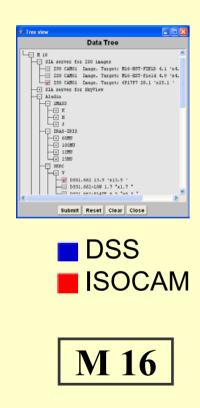


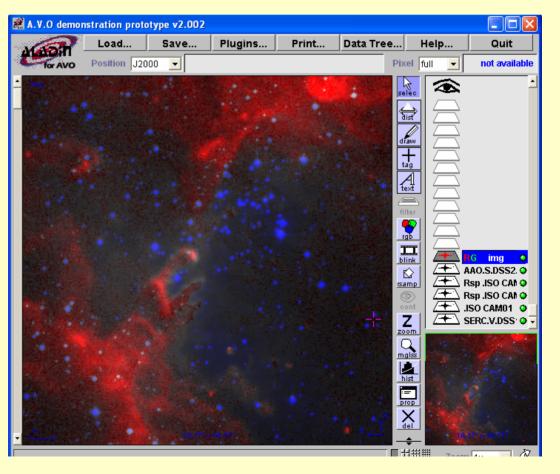
Version 10.0 (29/Jun/2006): Object type queries

- 34845 observations classified
- 109 different object types
- Hierarchical classification based on SIMBAD +specific ISO types (ISOGAL, ELAIS Survey...) & SSO

Radio source	494
Infra-Red source	1042
X-ray source	11
Gamma-ray Burst	48
Multiple object	3655
Nebula of unknown	nature 5763
Star	12100
Galaxy	7295
IRAS Faint Galaxy	598
ISOGAL Survey	693
ELAIS Survey	924
SSO	2014

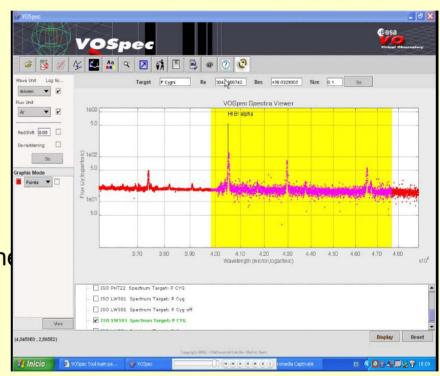
ISO and the Virtual Observatory


- ☐ ISO has played a key role in
 - The <u>definition of standards for interoperability</u> within the International Virtual Observatory Alliance
 - The provision of data best suited for access by the VO
 - The scientific participation to VO activities
 - science AVO demos in 2004 and 2005
 - member of EURO-VO Science Advisory Committee in 2006+
- ☐ Active link with the ESAC VO Team
 - ISO Archive Scientist
 WO Archive Scientist



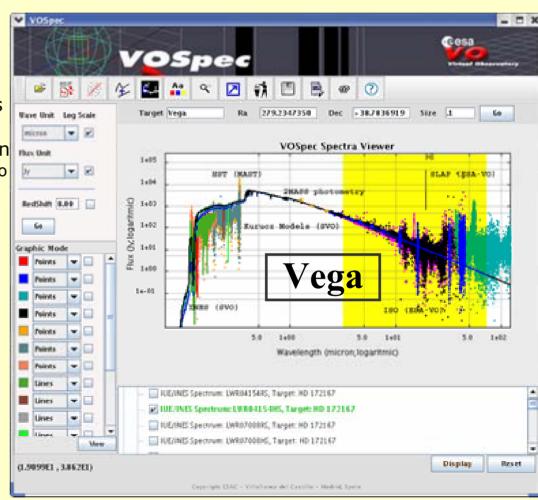
ISO images access

- ☐ ISO images provided via the IVOA Simple Image Access Protocol (SIAP)
 - Part of AVO demos 2004-2005, together with XMM-Newton
 - Accessible from Aladin, other Archives



ISO Spectra access

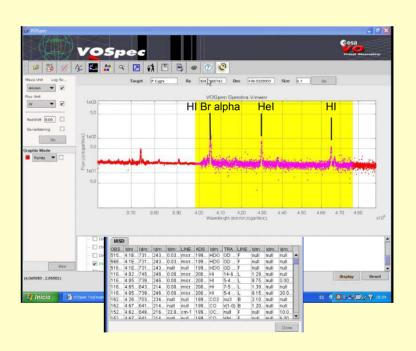
- ☐ ISO spectra provided via the IVOA Simple Spectrum Access Protocol (SSAP)
 - ISO first facility ever in the VO world
 - Reference implementation and test bed for proper specification and improvement of the protocol
 - Part of AVO demos 2005
 - Accessible from Aladin, Astroscope, other Archives
 - Also including ISO Photometric Catalogues



VOSpec

☐ Spectral Energy Distribution (SED) VO builder developed by ESA-VO

- On-the-fly generation of SED from VO spectra and photometric servers
- Fitting capabilities
- Plot enhancement and export in various formats
- Automatic units handling and conversion via dimensional analysis (Osuna & Salgado 2005)
- Overlap and renormalization of theoretical models available as VO servers
 - Stellar synthesis model
 - Starburst99
 - Kurucz
 - SED@
- Redshift correction
- De-reddening

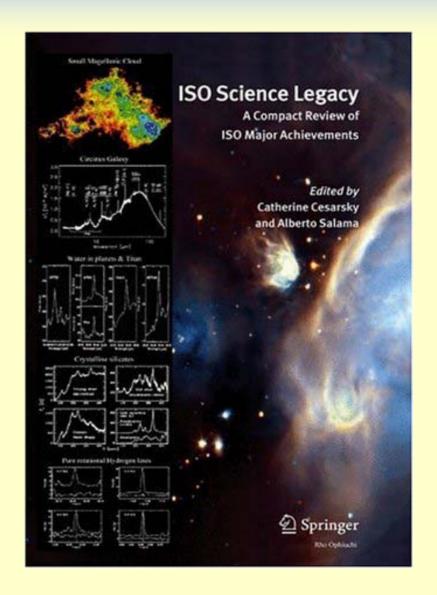


Spectral Line Database Access

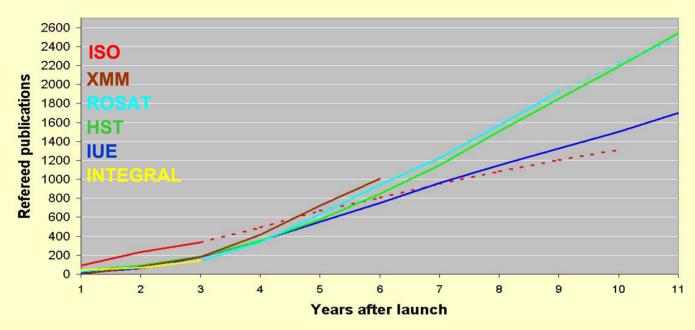
□ ISO has also contributed to the definition of a completely new standard, the Simple Line Access Protocol (SLAP), by giving access through the VOSpec to the Infrared Astronomical Spectroscopic Database (IASD)

IASD is a database of spectral line transition information transcribed from the literature (from Jourdain de Muizon et al.)

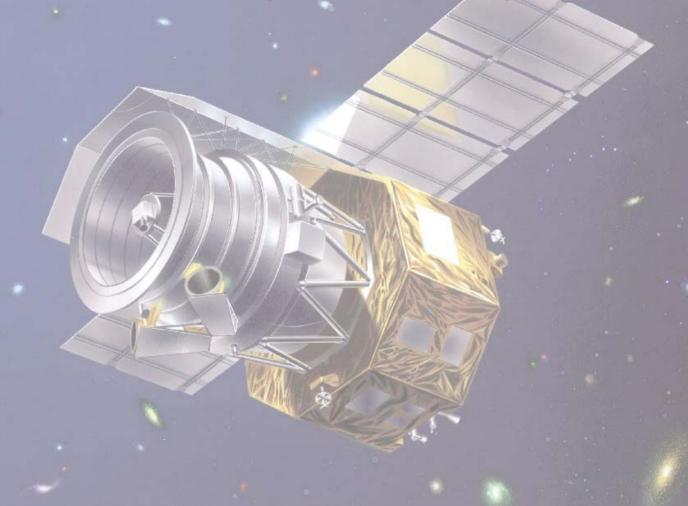
The Line Data Model supports atomic and molecular "laboratory" databases as well as catalogue of observed lines



Space Science Reviews Springer, 2005


- Based on 1200 ref. papers
- 450 pages
- 17 chapters
- Also available at http://iso.esac.esa.int/

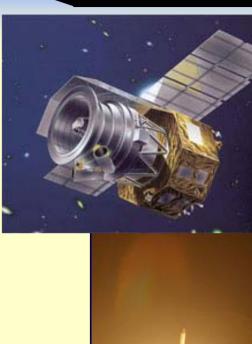
ISO Publications



Publications after launch

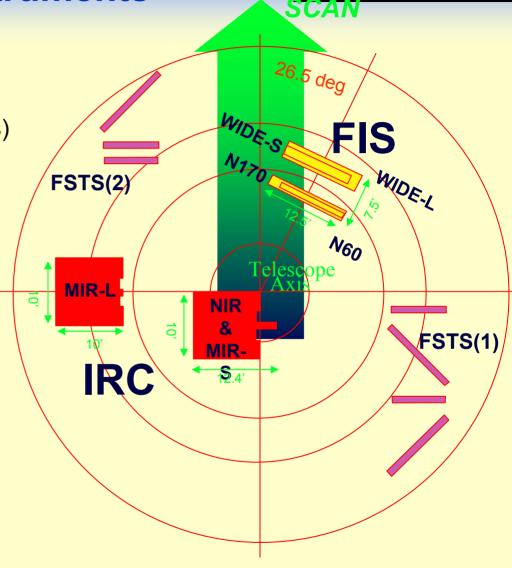
- 1388 refereed publications and more than 115 PhD thesis
 - Available from http://iso.esac.esa.int/
- ISO operational phase short w.r.t to other missions
 - Not enough cumulative gain during operations
 - Post ops phase value reflected in publication rate (cf. ROSAT)

The AKARI (ASTRO-F) mission


Introduction

- Mission:
 - JAXA-led project,
 - Sky survey at IR wavelengths
 - plus pointed observations.
- □ Status:
 - Launched: Feb 2006.
 - All-sky survey dedicated phase end Nov 2006, now mix pointed obs + survey
 - LHe depletion expected for Aug 2007.
 - ESA contribution funded to 2008.
 - ESA provides ground station support and pointing reconstruction for survey to advance production of catalogues in return for 10% of pointed observations
 - FSAC:
 - Community support
 - Pointing reconstruction.

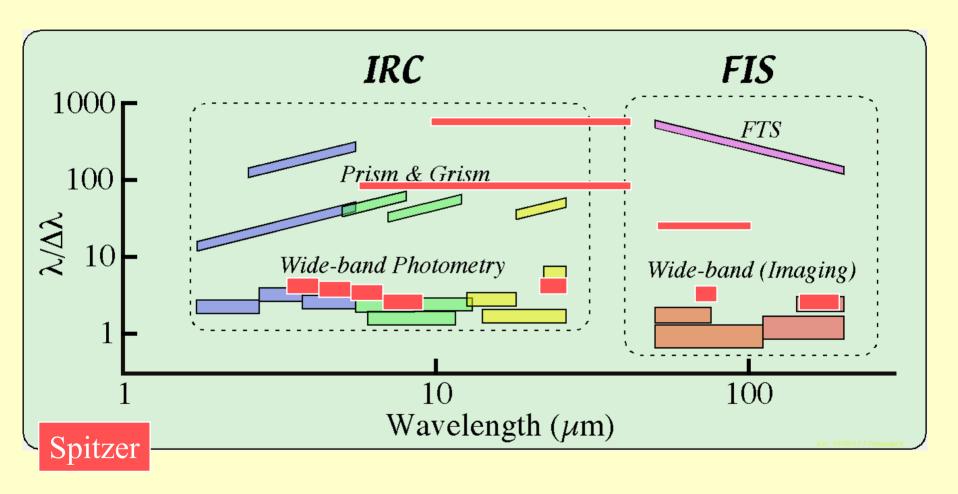
Tracking support (Kiruna).

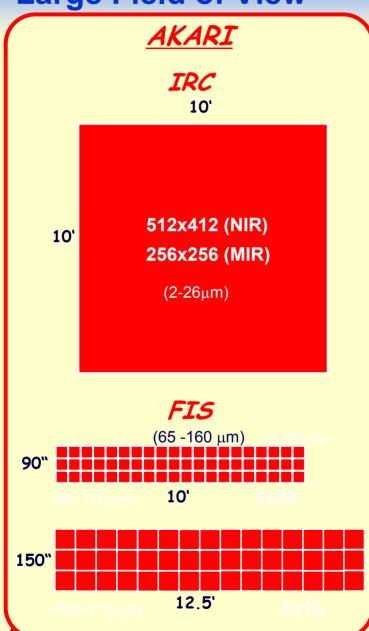

AKARI Focal plane instruments

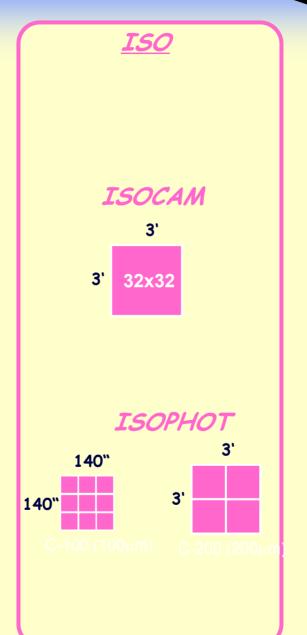
FIS (Far-Infrared Surveyor)

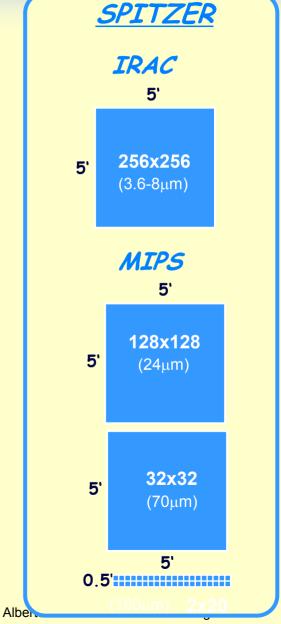
- □ 50 180 µm (4 photometric bands)
- ☐ All-Sky Survey (4 bands)
 - 65,90,140,160 µm
- Deep imaging and spectroscopy

IRC (Infrared Camera)


- □ 1.7 26 µm (9 bands, 3 cameras)
- → All-Sky Survey in 2 bands
 - 9,18 µm
- Imaging and spectroscopy

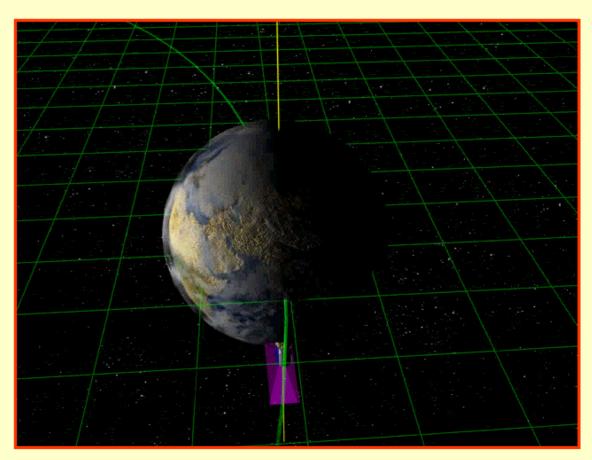

Photometric & Spectroscopic Capabilities





Large Field of View

Impact and Legacy of AKARI Survey

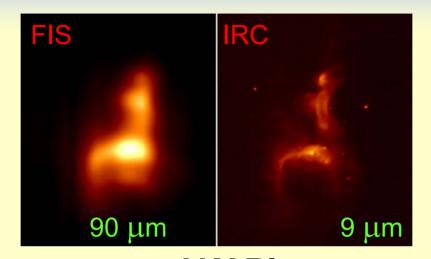

AKARI is a surveyor not an observatory

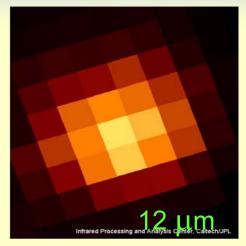
AKARI is complementary to Spitzer

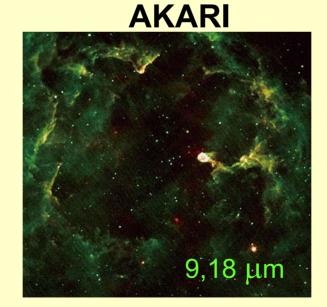
Virtues of AKARI are:

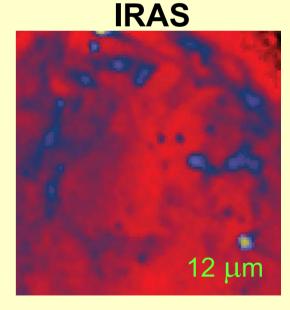
- Enormous area coverage
- ☐ Large volumes
- ☐ Suitable moderate depths
- Cross correlation potential

Aim to produce a high quality, reliable catalogues that will match future surveys

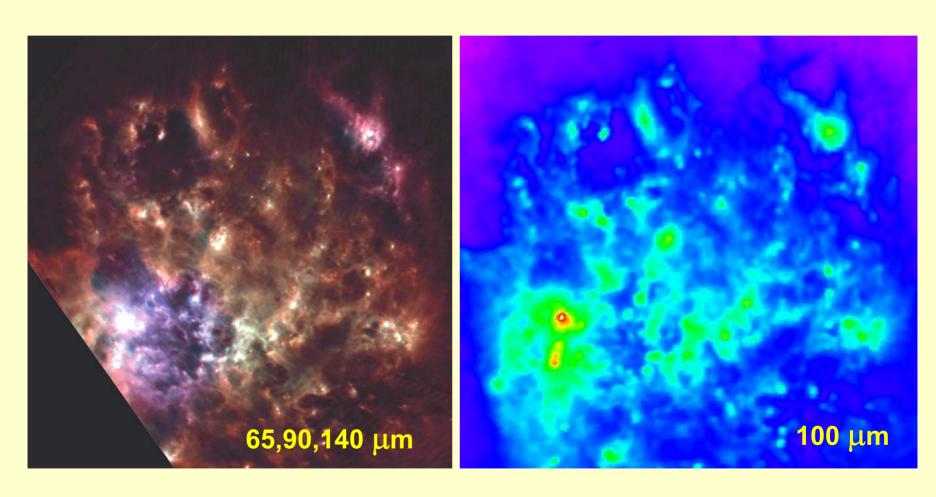



AKARI outreach images




Reflection nebula IC 4954

Reflection nebula IC 1396



AKARI outreach images

LMC

AKARI

IRAS

AKARI Observation Program

Large Area Surveys

- All-Sky survey in 6 bands (9,18,65,90,140,160 µm)
- NEP Survey
- LMC Survey

Mission Program (Guaranteed Time)

Coordinated project teams-led programs of specific subjects

Open-time Program

- 30% of pointed observations, ditrubuted via parallel Call for Proposals
 - 20% for Japan, Korea
 - 10% for Europe (ESA member states)

Director's time & Calibration

10% of total time

All-Sky Survey catalogues

- ASTRO-F/FIS Flux of known sources
 - Flux consistency check with the IRAS PSC + additional FIR flux data.
 - Incremental release during the survey period.
 - Team release: incrementally during the survey period
- □ The Bright Source Catalogue (BSC).
 - Uniform source extraction (Same detection limit for any area in the sky).
 - Consolidated data generated after the end of survey.
 - Team release: ≤ 1 year after the End of Survey. (→ ~Aug 2008)
- ☐ The Faint Source Catalogue
 - The supplemental catalogue of the fainter sources in the region with higher redundancy.
 - Additional process after BSC.
 - Team release: ≤ 1.5 year after the Bright Source Catalogue (→ ~ Dec 2008)

Public release: 1 year after team release

European Open Time http://akari.esac.esa.int/

- ☐ Call for Proposals in September 2005 (parrel ESA Japan/Korea)
 - ESA Call: 50 Proposals from 42 Pl's in 32 institutes from 9 European countries
 X 7 oversubscription
 - TAC selection: 28 proposals (from Solar System to cosmology)
- □ Open Time programme execution
 - Started on 12 September 2006
 - 13% of allocated European programmes performed to date
- Many new operational constraints
 - Very stringent visibility constraints, strong dependence on (changing) orbit
 - Need intensive interaction with Japanese Teams
 - Helpdesk system with users well in place
- ☐ ISAS (and ESAC mirror) archive will open for AKARI users in Jan 2007
- □ Proprietary period for all Open Time observations: 1 year after end-of-He
 - Current implementation based on initial lifetime estimates: 900 pointings