Formation of high mass stars with the HSO

Studying the earliest phases of massive-star formation

Annie Zavagno, OAMP, France

Formation of high mass stars

	Instruments used (and GT consortium)	Program	Main goals
Henning et al.	PACS (GT)	Imaging & Spectroscopy	Pointed obs. of selected sources
Motte, Zavagno, Bontemps et al.	PACS (GT) and SPIRE (GT)	Imaging (PACS+SPIRE) and spectroscopy (PACS)	 Unbiaised survey of nearby molecular clouds + Pointed obs. of triggered star forming regions (hot PDRs)
Abergel, Baluteau, Zavagno et al.	SPIRE (GT) and PACS	Imaging and spectroscopy (PACS+SPIRE)	 Dust cycle in the ISM + SPIRE imaging and FTS spectro. of hot PDRs
Van Dishoeck et al.	HIFI	Spectroscopy	Time sequence evolution using water as tracer

The birth of high-mass stars: An *Herschel* imaging survey of nearby giant molecular cloud complexes

Program

- 1) Wide-field photometric imaging of nearby molecular complexes with both SPIRE & PACS
 - +
- **2) a detailed spectroscopic & photometric study** of hot PDRs with PACS
- 125 hours = 85h SPIRE GT from SAG3 + 20h PACS GT from OAMP + 20h GT from HSC
- Coordinators: Motte, Zavagno, Bontemps

Background and aims of present proposal

Science context

How do OB star form?

Radiation pressure is expected to stop the accretion when $M_* \sim 8 M_?$ What physical mechanism forms high-mass stars (HMS)?

Open questions related to the earliest phases of HMS formation

- Initial conditions and evolutionary sequence for HMS formation?
- Role of external triggers in massive star formation?

Main goals of our GT Herschel project

- Discover the precursors of OB stars (protostars & prestellar cores)
- Derive their mass and luminosity
- Assess the importance of triggering

Seeking the precursors of high-mass stars

Criteria used to search for the progenitors of HII regions

High-luminosity sources Embedded in massive envelopes "red" FIR colors, dense gas Associated with hot dust & gas Without a developed HII region no or weak cm free-free

 $> 10^3 L_2$ hot core and masers

Galaxy-wide selections of *IRAS* sources

Heterogeneous samples (d = 1-10 kpc) tracing 0.1-1 pc objects

(e.g. Molinari et al. 1996; Beuther et al. 2002)

- Biased against "IR-quiet" sources
- Bad spatial resolution at the SED peak (~100 μ m)

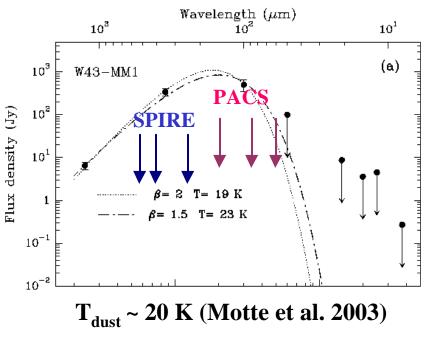
Herschel uniqueness

Wide-field imaging **Spectro-imaging capabilities (60-670 mm)**

Unprecedented spatial resolution at FIR wavelengths

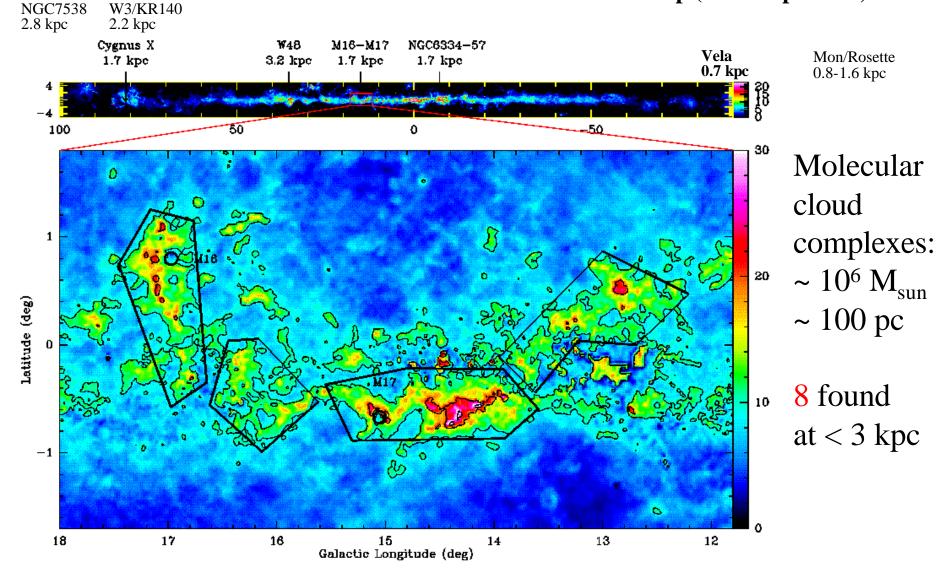
Uniqueness of *Herschel* to study the precursors of high-mass stars

• Spatial resolution


 $\sim 0.1 \ pc \ @ 1.7 \ kpc$ (unmatched at FIR wavelengths – 10" @ 140 μm)

- Spectral coverage of PACS and SPIRE
- Ideally suited to detect high-mass starless cores and protostars

- Provide **robust measurements** of their basic properties (bolometric luminosity and mass)


• Imaging speed for the photometry Unbiased survey of molecular complexes

Important lines traced by the spectroscopic cameras
e.g. [OI], [CII], [NII], [NIII], [OIII]
→ Physical diagnostics (T, n)

1.Wide-field photometric imagings of all the molecular cloud complexes at < 3 kpc

NIR extinction map (Bontemps et al.)

Molecular complexes to survey with *Herschel*

Molecular complexes	D (kpc)	Gas mass (M_{\odot})	$A_{\rm V} > 10$ area (deg ²)	$\sigma_{250\mu m}^{a}$ (mJy)	Ref. ^b	ALMA vis.	Notes
Vela	0.7	$> 5 \times 10^5$	3.1	40	(1)	Y	Intermediate-mass SFR near a supernova bubble.
MonR1/R2 /NGC2264	0.8	2.5×10^5	3.5	30	(2),(3)	Y	Two concentrated intermediate-mass SFRs.
/Rosette	1.6	$3.5 imes 10^5$			(9)	Y	An isolated high-mass SFR.
Cygnus X	1.7	4×10^6	6	100	(4),(5)	Ν	The richest nearby high-mass SFR, triggered by Cyg OB2.
M16/M17 /Sh40	1.7	1.5×10^6	2.5	< 1000	(5)	Y	Rich part of the Sagitarius arm with 2 reference SFRs.
NGC 6334 /6357/6231	1.7	1.3×10^6	3.5	< 1000	(5)	Y	Network of 3 high-mass SFRs in the Carina-Sagitarius arm.
W3/W5 /KR140	2.2	2×10^5	1.5	10	(6), (7)	Ν	Reference high-mass SFR in the Perseus arm.
NGC 7538	2.8	1×10^6	0.6	25	(8)	Ν	Reference high-mass SFR in the Perseus arm.
W48	3.0	$5 imes 10^6$	3.9	< 400	(5)	Y	Extremely massive complex in the Galactic molecular ring.

SPIRE 250, 360, 520 μ m and **PACS** 110, 170 μ m survey of intermediate-distance clouds down to A_v > 10 mag (~ 25 deg²)

The « 3 kpc opportunity » to study OB star formation

Within 3 kpc, the star formation rate is 1/20th that of our Galaxy

 $SFR_{<3kpc} = 0.2 M_{sun} yr^{-1}$ (McKee & Williams 1997)

Enough statistics for precursors of stars with 8-50 M₂

Source	Spectral type	B3–B1	09-07	O6-O3	O 3–O1	Total
	Final mass	$8-20~M_{\odot}$	$20-50~M_{\odot}$	$50-100~M_{\odot}$	$> 100~M_{\odot}$	$> 8 M_{\odot}$
Pre-stellar core		480	150	40	30	700
Class 0-like protostar		$\overline{48}$	15	4	3	70
Infrared protostar		480	150	40	30	700
UCH II region		160	50	15	10	235

Table 3: Predicted numbers of OB-like YSOs in the targetted complexes of Table 2.

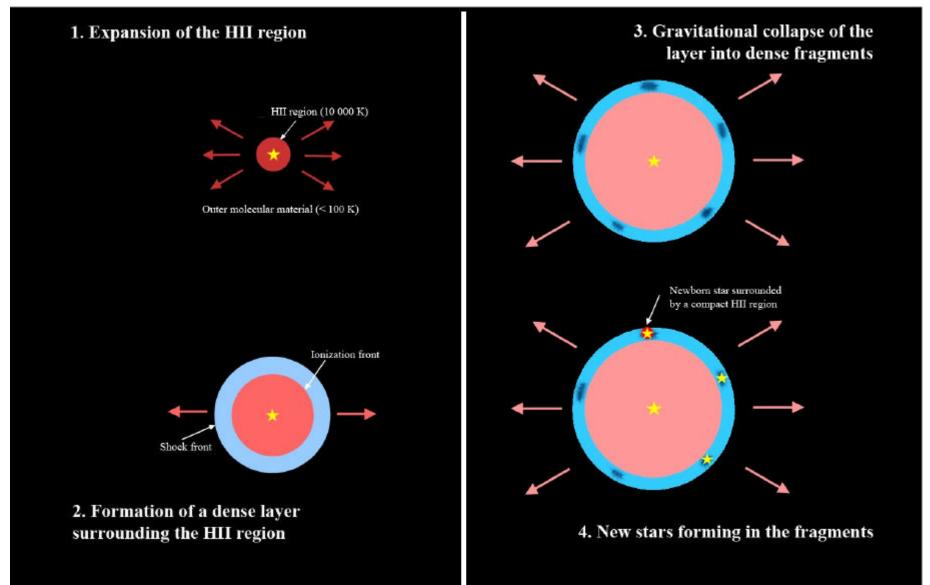
Intermediate-distance complexes have d_{sun} from 0.7 to 3 kpc

Enough resolution with *Herschel* to identify high-mass sub-clusters (~ 0.1 pc)

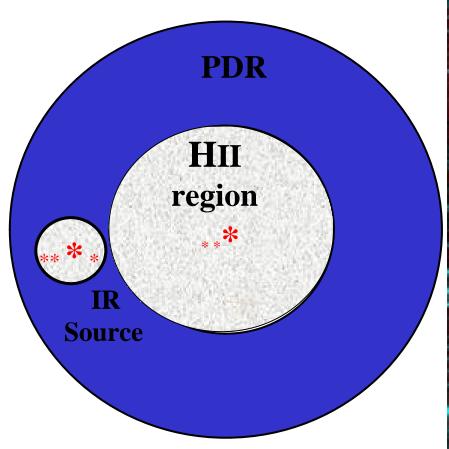
Mapping strategy and time estimate

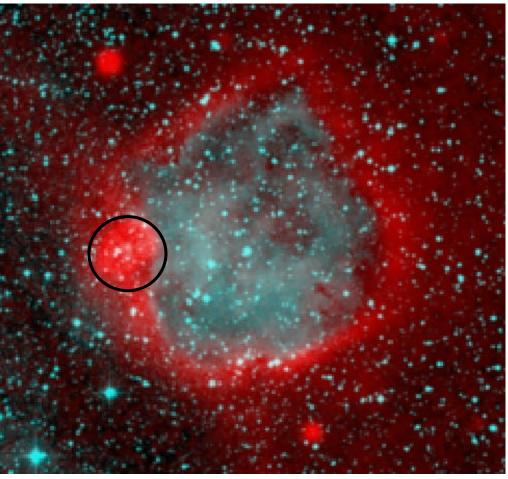
Fast photometric imaging with SPIRE

250 µm, 360 µm, 520 µm Scanning at 30-60''/sec (cross-linked scans, no chopping) \Rightarrow rms _{250µm} ~ 15-20 mJy (5 σ detection of 0.2-0.3 M_o sources) \Rightarrow 35 hours for 24 deg²


Fast photometric imaging with PACS

110 µm, 170 µm Scanning at 24''/sec (cross-linked scans, no chopping) \Rightarrow angular resolution preserved (Billot et al.) \Rightarrow rms _{170µm} ~ 13 mJy (5 σ detection of 0.1 M₂ sources) \Rightarrow 65 hours for 24 deg²


100 hours for wide-field photometric imaging with SPIRE & PACS


2. Spectroscopic & photometric study of triggered star formation

The « collect and collapse » model: Elmegreen & Lada (1977)

Hot PDRs potentiel site of triggered massive star formation

Circular HII region Annular PDR Signposts of massive-star formation

(maser, ultracompact HII region, bright IR sources)

Sh 104 DSS - *R* + **MSX -** *A* (6-11μm)

Simple geometry

Proposed observations and time estimate

Photometric imaging with PACS

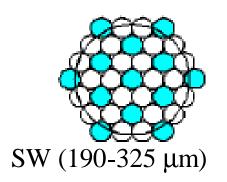
110 $\mu m,$ 170 $\mu m.$ 10'x10' areas covered @ 6''/sec

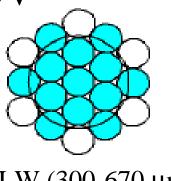
 \Rightarrow rms _{250µm} ~ 13 mJy (S/N > 50 for a source with a 1 Jy flux)

 \Rightarrow 8 hours for 5 sources

Spectroscopic pointings with PACS

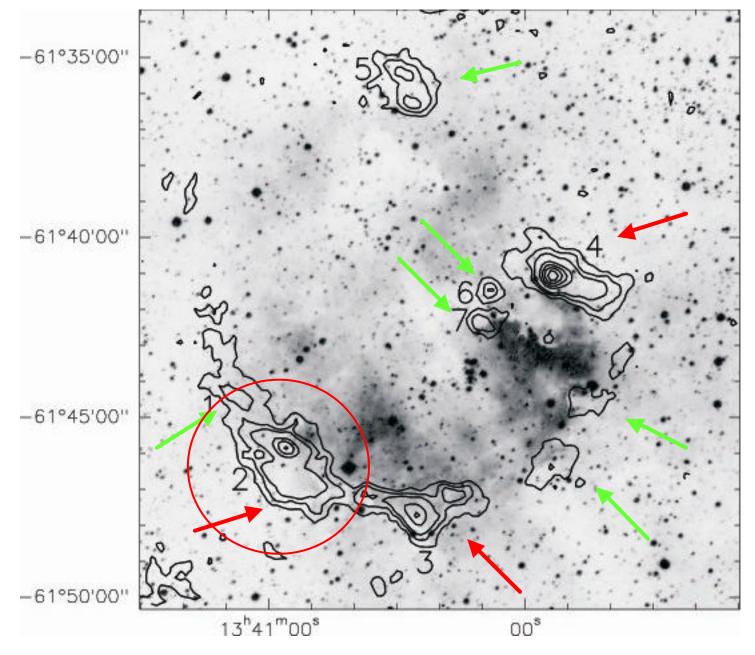
- PDR diagnostics: [OI] 63 and 146 μm , [CII] 158 μm

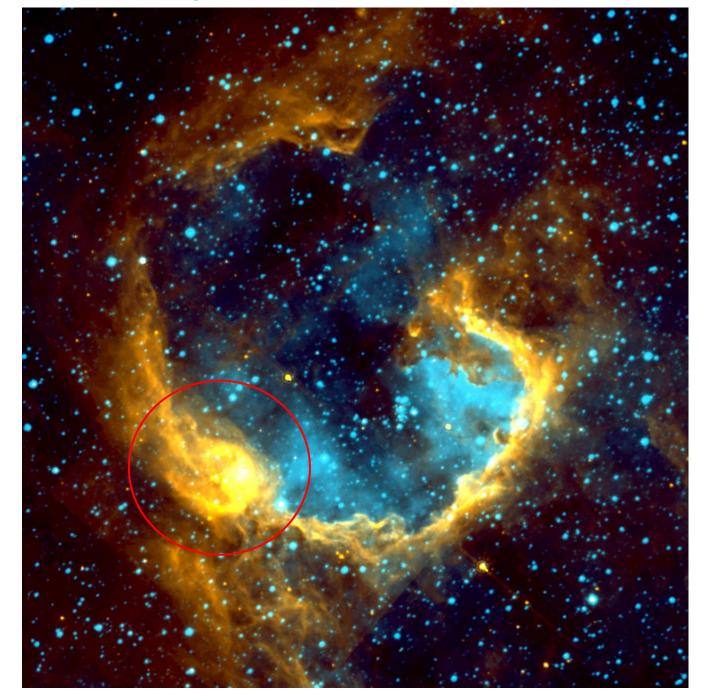

- Ionized region diagnostics: [NII] 122 and 205 $\mu m,$ [NIII] 57 $\mu m,$ and [OIII] 88 μm
- Molecular absorptions: OH 119.23 and 119.44 μ m, CH 149.09 and 149.39 μ m, and H₂O 179.53 μ m
- \Rightarrow 13 hours for 25 pointings (5 positions x 5 sources)


20 hours for detailed photometric and spectroscopic pointings with PACS (Zavagno et al.)

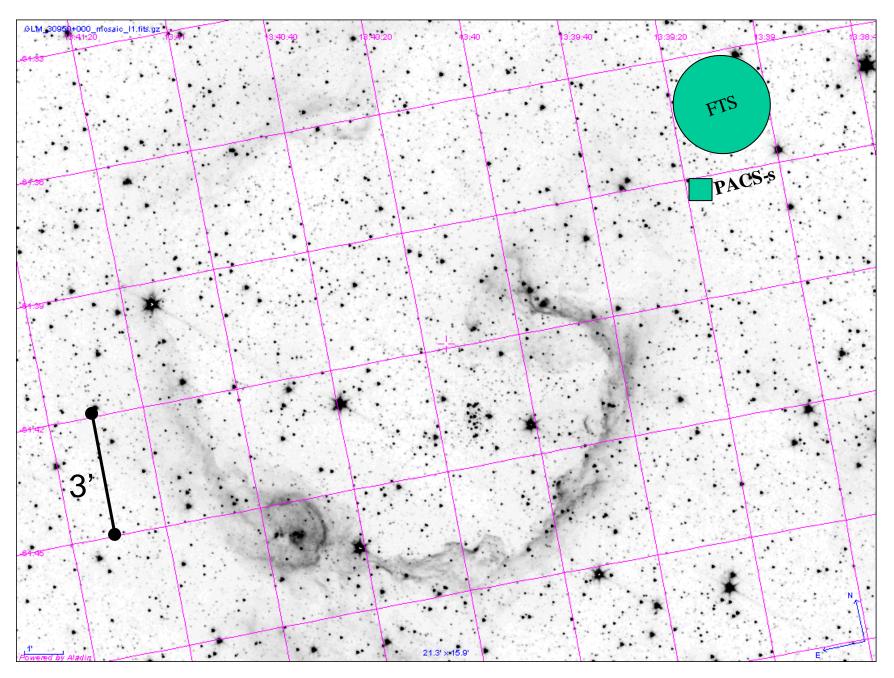
Hot PDRs SPIRE-FTS observations (in SAG4 GT)

Physical conditions in massive star forming regions (gas and dust)


- High resolution mode
- Spectrum: lines + continuum $230 670 \ \mu m$
- 3 pointings/source and 4 sources = **12 hours**
- Spectro imaging on a 2.6' FoV

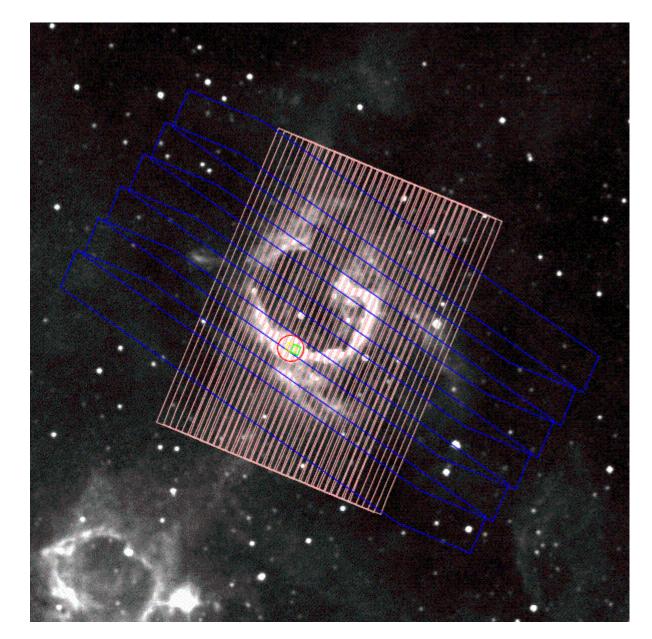

LW (300-670 µm)

RCW 79 1.2-mm continuum emission (ESO-SEST - contours) and Ha image (SuperCosmos Ha survey – grey scale)



SPITZER 8 microns and Halpha

RCW 79



Zavagno et al. 2006

RCW 79 Image: 3 µm (GLIMPSE)

Hot PDRs potentiel site of triggered massive star formation

HSPOT

SPIRE-i PACS-i FST PACS-s

Exploitation Plan

Team focus

 Complete catalogs of high-mass starless cores and protostar Basic characteristics (mass, luminosity, density, SED...) Lifetimes of the various phases

Luminosity & mass functions of massive YSOs

• Relationship of clouds with YSOs clusters, OB associations to search for triggering.

Legacy value

- Long-lasting databases
- Dust properties in OB star-forming regions
- Templates for extragalactic star forming regions

Preliminary Distribution of Responsible Subteams for the 'OB Star Formation' SPIRE/PACS Survey

Cloud complex	Area (deg ²)	Dist (kpc)	Cirrus Noise _{250m} (mJy/b)	Required rms _{250m} (mJy/beam)	Required SPIRE+PACS Time (hr)	Responsible Team(s)
Vela	3.1	0.7	40	20	13	Rome/Saclay
Mon R1-R2	2.0	0.8	30	20	15	Cardiff/Saclay
Rosette	1.5	1.5				Saclay/Canada
Cygnus X	6	1.7	100	20	25.5	Saclay/HSC
M16/M17/Sh40	2.5	1.7	< 1000	20	10.5	HSC/RAL
NGC 6334	1.7	1.7	< 1000	20	7	Marseille/Rome
NGC 6357	1.7				7	RAL/Marseille
W3/KR140	1.5	2.2	10	20	6.5	Canada/Rome
NGC 7538	0.6	2.8	25	20	2.5	Canada/Cardiff
W48	3.9	3.0	10	20	16.5	Saclay/Rome

Preparatory studies for the SPIRE/PACS Survey

- Ongoing multi-wavelengths analysis for the selected complexes Existing IR databases (2MASS, UKIDSS, Spitzer, MSX, IRAS and AKARI – to come)
- Proposal preparation to ask for missing data
 - * CO and molecular tracers
 - * mm and radio continuum
 - * dynamical studies
 - * masers
 - *
- Herschel observations preparation
 - Use of HSPOT
 - Better strategy depending on results of the latest tests