

An Introduction to HSpot

Mark Kidger

Herschel Science Centre Community Support Team

HERSCHEL OBSERVATORY

What is HSpot?

- <u>HSpot</u> is the tool for planning and preparing Herschel observations and submitting proposals
- Joint ESA/NASA development; adapted from Spitzer's Spot – originally SPOT (Spitzer Planning Observation Tool)

<u>HSpot</u> consists of two layers

- Core Spot
 - About 75%: the core functions of HSpot developed and maintained at IPAC.
- <u>Herschel Spot</u>
 - About 25%: a layer of code and functions specific to Herschel and Herschel's instruments (largely spectroscopy).
- Approximately 20 man-years of effort have gone into developing <u>HSpot</u>.
 - About 15 man-years at IPAC
 - About 5 man-years at ESTEC

What is HSpot for?

- <u>HSpot</u> can be used for all phases of planning a Herschel observation
 - Entering and visualising targets
 - Investigating the feasibility of potential observations
 - Target visibility
 - Target background
 - Possible confusion with other sources
 - Time required to carry out an observation, or programme of observations.
 - Designing and optimising your observations.
 - Submitting an observing proposal.

How does HSpot do it?

- Ten basic instrument configurations are defined.
 - Astronomical Observing Templates (<u>AOTs</u>)
- <u>HSpot</u> allows you to personalise an AOT to make it into the observation that you require.
 - An Astronomical Observing Request (AOR)
- AORs are the individual observations for Herschel.
 - AORs are later converted into the instructions that Herschel needs to carry out the observations.
 - These are transmitted to the satellite for execution.
 - Observing autonomously requires every observation to be specified in great detail.

Hardware and Software requirements

- Written in JAVA language
 - JAVA 1.5 or later required (only an issue with Mac)
- Operating System configurations supported
 - UNIX: Solaris 2.8
 - Windows: NT, ME, 2000, XP
 - Linux: RedHat 7.x, 8.0, 9.0; Suse 9.0
 - Mac: OS 10.4
- Hardware configurations tested and supporting HSpot
 - Sun Workstations (Ultra1 and superior)
 - Windows PC (2000, NT, XP) with Pentium processors
 - Linux PC: Gnome and Fedora window managers
 - Mac PC
- In short: HSpot will run on almost any computer!!

But Beware of...

- <u>HSpot</u> does not work well on Sparc 1, 2, 5, 10 or 20.
- Some <u>HSpot</u> functions (particularly HIFI) crash on Linux with KDE core.
 - This is due to a bug in KDE, not to HSpot.
 - Do not use KDE with HIFI!!
 - Java does not work with fywin2 window manager.
- <u>HSpot</u> has not yet been tested on Windows Vista.
 - We do not anticipate problems, but cannot guarantee that there will be none.
- <u>HSpot</u> is very memory hungry
 - It will work with only 256MB of memory, but 512MB is recommended and 1GB is better.

Bugs and Updates

- Like any highly sophisticated and complex system HSpot is not perfect.
 - It has been very extensively tested, but astronomers SPACE DBSERVATORY are a devious bunch and will always find ways of doing things that have never been imagined in testing.
 - Inevitably some previously unknown bugs will appear.
 - But, before reporting a bug, check first that it is not one that we do know about (the "Bug List" in the Web Page).
- Regular updates are made at pre-planned intervals that fix bugs and add functionality.
 - ERSC Enable "Automatic Updates" and the updates will be downloaded and installed for you as soon as they become available.

HERSCHEL OBSERVATORY

Enough talk about it! It's easy to use...

let's use <u>HSpot</u>!

http://www.rssd.esa.int/herschel