

1

SPIRE point source and jigglemap observations

Sarah Leeks

Instrument and Calibration Scientist Astronomy Science Operations Division Research and Scientific Support Department ESA

SPIRE point source and jiggle-map observations

Sarah Leeks

SPIRE Photometer Overview

- 3-band imaging photometer
 - 250, 350, 500 µm (simultaneous)
 - $\lambda/\Delta\lambda \sim 3$
 - 4 x 8 arcmin field of view
 - Diffraction limited beams (18, 25, 36")
- 8 arcmin 45 mm

SPIRE point source and jiggle-map observations

Point Source Observations

20

- 7-point map (+ repeat the central point)
- Angular step θ ~ 6 arcsec
 (> pointing or positional error)
- Total flux and position fitted
- Compared to single accurately pointed observation, S/N for same total integration time is only degraded by

~ 2	20%	at	250 µm
~	13%	at	350 µm
~	6%	at	500 µm

Chopping and Nodding

ESTEC

• Chop with BSM to get a difference signal (background + source in one, just background in the other).

Herschel Open Time Workshop

- Nod TELESCOPE to remove asymmetries in optics and in background thermal radiation field (the telescope).
- Note, always observing the source

BSM=Beam Steering Mirror=Chopper

Chopping and Nodding (2)

- Each jiggle position is chopped (2 Hz, 16 cycles) while at nod at position A (total=64 s).
- Then telescope moves to nod position B
- Repeat chopped jiggle.
- Repeat chopped jiggle at nod B.
- Repeat chopped jiggle at nod A

The SPIRE Standard Point Source Observation

- Number of Repeats: 1 (1 ABBA cycle)
- On-source integration time : 256 s
- Instrument and observing overheads: 143 s
- Observatory overhead: 180 s
- Total Observation time: 579 s
- 1-σ noise (250, 350, 500): (1.4, 1.6, 1.3) mJy
- Note this produces an rms flux density limits that are already lower than the extragalactic confusion limits.

SPIRE

Some Points to Note

- The seven-point jiggle sensitivity assumes the ideal case in which the source is on-axis.
- A sparse (undersampled) map of a roughly 2 x 4 arcminute region around the source will also be generated by seven-point observations.
- Data will be fitted to find the flux density and position of the source.
- For faint sources
 - the flux density should be accurate but it will have low S/N
 - fitting the position will not be very meaningful

Jiggle/Small Map Observation

 As SPIRE arrays are not fully filled a 64-point "jiggle" pattern is performed to get full spatial sampling
 (16 points per AB evaluate the periods per point)

(16 points per AB cycle, 4 chop cycles per point)

- Chopping (and nodding) to 4 arcmin amplitude
- Available field of view = 4 x 4 arcmin
- Guarantees an area 4 arcmin diameter circle

Sky Sampling with $2F\lambda$ Feedhorn

Arrays

Full sampling of the image require scanning or "jiggling" of the telescope pointing

SPIRE point source and jiggle-map observations

Sarah Leeks

Array orientation

Why only a 4 arcmin circle

- Array orientation on sky depends on date of observation
- Guaranteed area of 4 arcmin diameter circle
- Note for sources near the ecliptic the array orientation on the sky is fixed

Guaranteed area

Standard Observations

Number of repeats:	1 (1 AB cycle)			
On-source integration time:	256 s			
Instrument and observing overheads: 251 s				
Observatory Overhead:	180 s			
Total time=	687 s			
1-σ noise (250, 350, 500):	(4.7, 6.3, 5.3) mJy			
Number of repeats:	2 (1 ABBA cycle)			
On-source integration time:	512 s			
•	512 s			
On-source integration time:	512 s			
On-source integration time: Instrument and observing overheads	512 s : 443 s			

Note that the 1- σ noise is below the confusion noise limit with one repeat. So one repeat should be adequate for most small map observations

SPIRE point source and jiggle-map observations

Small Map Data Products

- Jiggle (Small) Map observations produce a product of a fully sampled map
- It is assumed that there is nothing in the reference beam.

Chop Constraint

- Point Source and Small Map have the option to constraint the chopping, this allows the user to avoid chopping onto a bright source.
- Effectively a scheduling constraint hence the observatory overhead is increased to 600 s.
- The angle range and the range +180 degrees will be avoided.
- Note that the array projection on the sky does not change near the ecliptic.

More Details

- Refer to the AO documentation for more details, including HSpot examples and how to implement observations:
- SPIRE Observers' Manual

http://herschel.esac.esa.int/Docs/SPIRE/html/spire_om.html

Specifically:

- •Chapter 3, Chapter 3 ("General Performance")
- •Chapter 4, Section 4.1 ("Photometer AOT Modes")
- •Chapter 6, Sections 6.3 and 6.5

("HSpot Components for Setting up a SPIRE Photometer Observation" and Example Photometer Observations)