SPIRE SPIRE: Herschel's Submillimetre Camera and Spectrometer

Matt Griffin, Alain Abergel, Peter Ade, Philippe André, Jean-Paul Baluteau, James Bock, Alberto Franceschini, Walter Gear, Jason Glenn, Douglas Griffin, Ken King, Emmanuel Lellouch, David Naylor, Göran Olofsson, Ismael Perez-Fournon, Michael Rowan-Robinson, Paolo Saraceno, Eric Sawyer, Alan Smith, Bruce Swinyard, Laurent Vigroux, and Gillian Wright + the SPIRE Consortium

- SCIENTIFIC GOALS AND DESIGN DRIVERS
- INSTRUMENT DESCRIPTION
- OBSERVING MODES
- PERFORMANCE ESTIMATES

- Cardiff University, UK
- CEA Service d'Astrophysique, Saclay, France
- Institut d'Astrophysique Spatiale, Orsay, France
- Imperial College, London, UK
- Instituto de Astrofisica de Canarias, Tenerife, Spain
- Istituto di Fisica dello Spazio Interplanetario, Rome, Italy
- Jet Propulsion Laboratory/Caltech, Pasadena, USA
- Laboratoire d'Astronomie Spatiale, Marseille, France
- Mullard Space Science Laboratory, Surrey, UK
- NAOC, Beijing, China
- Observatoire de Paris, Meudon, France
- Rutherford Appleton Laboratory, Oxfordshire, UK
- Stockholm Observatory, Sweden
- UK Astronomy Technology Centre, Edinburgh, UK
- Università di Padova, Italy
- University of Lethbridge, Canada

SPIE meeting, Orlando

Spectral and Photometric Imaging Receiver

- 3-band imaging photometer
 - 250, 360, 520 μm (simultaneous)
 - $\lambda/\Delta\lambda \sim 3$
 - 4 x 8 arcminute field of view
 - Diffraction limited beams (17, 24, 35")
- Imaging Fourier Transform
 Spectrometer
 - 200 670 μm
 (complete range covered simultaneously)
 - 2.6 arcminute field of view
 - $\Delta \sigma$ = 0.04 cm⁻¹ ($\lambda / \Delta \lambda$ ~ 20 1000 at 250 µm)

Instrument Design Drivers

- Photometer
 - Efficient multi-band mapping with largest possible field of view
 - Point and compact source observation with high efficiency
- Spectrometer
 - Point source survey spectroscopy with broad wavelength range
 - Imaging spectroscopy with maximum available field of view
 - Variable spectral resolving power (few x 10 to ~ 1000)
- Both
 - Simplicity, affordability, reliability, ease of operation
 - Complementary to other Herschel instruments and other facilities

SPIRE Scientific Goals: GT programmes as examples

- High-redshift galaxies
- Local galaxies
- Star formation
- Interstellar medium
- Circumstellar matter
- Solar system

Photometer Layout and Optics

SPIRE

SPIRE Detector Arrays (2*F*λ Feedhorns)

0.3-K Germanium Bolometer Arrays

Feedhorn

- NEP ~ 3 x 10⁻¹⁷ W Hz^{-1/2}
- 100-K Si JFET readout
- 1/f noise knee < 100 mHz

SPIE meeting, Orlando

³He Cooler

- Cold stage temp. < 290 mK
- Hold time > 46 hrs
- Cycle time < 2 hrs
- Gas-gap heat switches (no moving parts)
- Heat lift provided to detector arrays > 10 μW

SPIRE Beam Steering Mechanism

SPIE meeting, Orlando

FTS Scan Mechanism

- Double parallelogram carriage with toothless gear
- Moiré fringe position measurement system (0.1 μm accuracy)
- Continuous scan or step-and-integrate operation
- Nominal speed: 0.5 mm s⁻¹
 - Signal frequency range 3 - 10 Hz

• 3.8-cm travel

Photometer Observing Modes: Point Source Photometry

- Simultaneous observation in the three bands with sets of co-aligned detectors
- Chopping 126" and nodding, using detector sets A, B, C
- OK if the pointing is accurate enough (~1.5")

SPIRE Photometer Observing Modes: Seven-point Jiggle Photometry

- Chopping 126"
- 7-point map
- Angular step θ ~ 5 arcseconds
 (> pointing or positional error)
- Total flux and position fitted
- Compared to single accurately pointed observation, S/N for same total integration time is only degraded by

~ 20%	at	250 μm
~ 13%	at	360 μm
~ 6%	at	520 μm

Field (Jiggle) Map

- Telescope pointing fixed or in raster mode
- Chopping ± 2 arcmin
- 64-point "jiggle" pattern for full spatial sampling
- Available FoV = 4 x 4 arcmin.

Photometer Observing Modes: Scan Map

- Most efficient mode for large-area surveys
- Telescope scans continuously at up to 60"/sec.

Overlap region

 Scan parameters optimised for full spatial sampling and uniform distribution of integration time

FTS Observing Modes

- $\Delta \sigma$ = 0.04 2 cm⁻¹ by adjusting scan length
- Continuous scan (nominal mode):
 - Calibrator in 2nd port nulls telescope background
- Step-and-integrate:
 - 2nd port calibrator is off
 - Mirror stepped with integration at each position
 - Beam Steering Mechanism chops on the sky
- Point source or sparse map spectroscopy/spectrophotometry
 - Produces 2.6- arcmin sparse map background is characterised by adjacent pixels
- Imaging spectroscopy (fully-sampled)
 - Beam steering mirror adjusts pointing between scans to acquire fully-sampled spectral image

SPIE meeting, Orlando

May 24 2006

SPIREFTS Spectral Line Resolving Power $(\Delta \sigma = 0.04 \text{ cm}^{-1})$

a

FTS Spectrophotometry Resolving Power ($\Delta \sigma = 1 \text{ cm}^{-1}$)

SPIRE Sensitivity: Line Spectroscopy $(5 \sigma; 1 hr)$

May 24 2006

SPIRE Sensitivity: Spectrophotometry ($\Delta \sigma = 1 \text{ cm}^{-1}$) (5 σ ; 1 hr)

SPIRE Herschel Reflector Emissivity (Fischer et al., Applied Optics, 43, 3765, 2004)

Observing Speed vs. Telescope Background Power (360 μm)

SPIRE

Current Status

- Flight instrument is being built and tested in stages at Rutherford Appleton Laboratory, UK
- Test campaigns so far

SPIRE

- 1. Spectrometer side (early 2005)
- 2. Full instrument (Autumn 2005)
- Qualification vibration (end 2005)
- 3. Post-vibration cooldown (currently in progress)

- Future steps
 - Installation of flight spectrometer mechanism
 - Final cold vibration
 - Extended instrument evaluation, calibration, observing mode testing
- Integration and test of flight spare
 - Use as a test-bed and for training after flight instrument delivery

SPIRE Flight Instrument

SPIE meeting, Orlando

SPIRE

Other SPIRE-Related Talks and Posters at this Meeting

Swinyard et al.	6265-12	Optical performance
Lim et al.	6265-13	Flight instrument testing overview
Lindner et al.	6265-106	FTS simulator
Spencer et al. Naylor et al.	6265-107 6265-108	FTS system performance
Sibthorpe et al.	6270-47	Photometer observing modes
Hargrave et al.	6275-40	300-mK thermal system
Hargrave et al.	6275-41	Internal calibrators
Nguyen	6275-45	Bolometer array performance
SPIE meeting, Orland	0	May 24 2006 27