

22. EVGA Meeting, Azores, Portugal

Augmenting the stochastic model in VLBI data analysis by correlations from atmospheric turbulence models

Sebastian Halsig, Thomas Artz, Andreas Iddink, Axel Nothnagel

Institute of Geodesy and Geoinformation, University of Bonn, Germany

2015/05/19

Motivation

Motivation

1

500

Routine VLBI data analysis of the IVS:

- stochastical model mainly consists of uncertainties from correlation process plus additional noise
- diagonal variance-covariance-matrix (no correlations)
- formal errors of standard VLBI analysis too optimistic

[www.apod.nasa.gov, last access on 12 May 2015]

2015/05/19

22. EVGA Meeting, Azores, Portugal

Motivation

this study:

- augmenting the stochastic model by correlations due to dynamic processes in the atmosphere
- concerning small-scale fluctuations (stochastic description)
- fully populated variance-covariance matrix based on turbulence modeling

[www.telegraph.co.uk; www.apod.nasa.gov, last access on 12 May 2015]

4 句

2015/05/19

22. EVGA Meeting, Azores, Portugal

A = A = A

state of research

ciritcal discussion

- neither anisotropy nor inhomogeneity is taken into account (except for Brunner and Schön, 2008)
- considering anisotropy (Brunner and Schön, 2008) some numerical instabilities due to the double integral occour
- most models based on a double integral which can only be solved numerically, necessitating a large computational effort

universität**bon**

Kolmogorov Turbulence Theory

universität**bonn**

gg

Kolmogorov Turbulence Theory

universität**bonn**

gg

22. EVGA Meeting, Azores, Portugal

Refractivity (co-) variance expression

$$C(t,t) = 0.782 \frac{k^2 H C_n^2 c \kappa_0^{-\frac{3}{5}}}{\sin^2(\epsilon_i(t))}$$
$$C(t,t+\tau) = 0.7772 \frac{k^2 H C_n^2 c \kappa_0^{-\frac{3}{5}}}{\sin(\epsilon_i(t))\sin(\epsilon_j(t+\tau))} \times \left(\frac{\kappa_0 u \tau}{a}\right)^{\frac{5}{6}} K_{\frac{5}{6}} \left(\frac{\kappa_0 u \tau}{a}\right)^{\frac{5}{6}}$$

Variable	Description	Variable	Description
$C(t, t + \tau)$	variance-covariance matrix	ϵ^i, ϵ^i	elevation angle for stations i and j
C_n^2	Structure constant	K	modified Bessel function of second kind
H	Integration height	$\frac{1}{\alpha}$	Matern correlation time
k	electromagentic wavenumber	c	stretched parameters for the
κ	wavenumber vector		outer scale length

[Kermarrec and Schön, J Geod 2014]

universität**bonn**

Residuals vs outliers

solution type	KOKEE-NYALES20	ONSALA60
Reference solution	31 (≈ 24.8%)	240 (≈ 21.3%)
(const. additional noise) additional noise, diagonal	9 (≈ 7.2%)	184 (≈ 16.3%)
(Gipson, 2006-2010) turbulence model	2 (≈ 1.6%)	67 (≈ 6.0%)
(Kermarrec and Schön, 2014)		
overall:	125	1127

2015/05/19

solution type	χ^2 [-]
Reference solution	2.50
(const. additional noise)	
additional noise, diagonal	1.13
(Gipson, 2006-2010)	
additional noise, correlated	1.67
(Gipson, 2006-2010)	
turbulence model	0.87
(Kermarrec and Schön, 2014)	

イロト イヨト イヨト イヨト

CONT02 session: 12.-26.08.2002

Ha	cim	et.	2
i ia	1318	- C L	а.

2015/05/19

22. EVGA Meeting, Azores, Portugal

э

WRMS

solution type	WRMS	
Reference solution	25.67	
(const. additional noise) additional noise, diagonal	28.40	1(
(Gipson, 2006-2010) additional noise, correlated	29.73	
(Gipson, 2006-2010) turbulence model	24.38	
(Kermarrec and Schön, 2014)		

CONT02 session: 12.-26.08.2002

2015/05/19

Improvement: 46.4%,

Unchanged: 53.6%,

Degradation: 0.0%

• • = • • =

Halsig et al.

2015/05/19

22. EVGA Meeting, Azores, Portugal

CONT02 session: 12.-26.08.2002

2015/05/19

universität**bonn**

Conclusion

Conclusion

further work

- further investigations of small baseline lengths
- parameterization of wind speed, structure constant, integration height, maximal baseline lengths for spatial correlation ...
- other error sources should possibly be used in the stochastic model

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you for your attention!

Literatur

 The effect of physical correlations on the ambiguity resolution and accuracy estimation in GPS differential positioning. PhD thesis, PhD thesis, Department of Geodesy and Geomatics Engineering, University of New Brunswick, Canada, 1994.
J. Gipson.
Correlation due to station dependent noise in VIbi. In: IVS 2006 General Meeting Proceedings, pages 286-290, 2006.
J. Gipson, D.S. MacMillan, and L. Petrov.
Improved estimation in vlbi through better modeling and analysis. In: IVS 2008 General Meeting Proceedings, pages 157–162, 2008.
G. Kermarrec and S. Schön.
 On the matern covariance family: a proposal for modeling temporal correlations based on turbulence theory. Journal of Geodesy, 88:1061–1079, DOI 10.1007/s00190–014–0743–7, 2014.
T. Nilsson and R. Haas.
Impact of atmospheric turbulence on geodetic very long baseline interferometry. Journal of Geophysical Research, Vol. 115, B03407:1–11, 2010.
A. Pany, J. Böhm, D. MacMillan, H. Schuh, T. Nilsson, and J. Wresnik.
Monto carlo simulations of the impact of troposphere, clock and measurement errors on the repeatability of vibi positions. Journal of Geodesy, 85:39–50, 2011.
A. Romero-Wolf, C.S. Jacobs, and J.T. Ratcliff.
Effects of tropospheric spatio-temporal correlated noise on the analysis of space geodetic data. In: IVS 2012 General Proceedings, pages 231-235, 2012.
S. Schön and F. K. Brunner.
Atmospheric turbulence theory applied to gps carrier-phase data. Journal of Geodesy, 82:47–57, doi: 10.1007/s00190-007-0156-y, 2008.
R. N. Treuhaft and G. E. Lanyi.
 The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Science, 22:251-265, 1987.

igg