EVGA2015, Ponta Delgada, Portugal, May 2015

Preliminary Results of Pulsar Astrometry with CVN

Wu Jiang, Zhiqiang Shen, Fengchun Shu, Zhen Yan, Li Guo Shanghai Astronomical Observatory 2015-05

Outline

- Introduction
- Some results with CVN
- Learn from VGOS system
- Remarks

Pulsar

Rotating neutron star with pulsar emission

Highest magnetic field B, (10⁸⁻¹⁴ G)

Highest volume density (10¹⁴g/cm³)

Steep power law spectrum, dispersion phenomena

Pulsar astrometry

- Pulsar Origins:
 - SNR associations

- NS birth sites in stellar clusters / OB associations
- True ages
- Astrophysics:

NS atmospheres, cooling curves etc. need absolute distances

• Evolution:

NS distribution and population velocities

• Environments:

Galactic electron density

中国科学院上演员 ISM

Distribution of pulsar in Milky Way

Normal pulsar (>1700)

Millisecond pulsar

中国科学院上海天文台 Shanghai Astronomical Observatory, CAS

Triangle parallax measurement through VLBI

中國科学院上海天文台 Shanghai Astronomical Observatory, CAS

Phase referencing

- Alternating scans on extra-galactic reference source with known position
 - solves for atmospheric effects
 - ionosphere $\propto \nu^{\text{-1}}$
 - troposphere $\propto \nu^{\text{+1}}$
- Pulsar flux $\propto v^{-\alpha}$, α =1.5 to 2.5
 - phase referencing at 1.4 GHz compromise
 - positional scatter at 5 GHz lower
- Making phase connections at 1.4 GHz requires:
 - 2-3 minute alternating scans over less than 4-5 $^\circ$
- In-Beam calibration is pretty appreciated

All published pulsar parallaxes as of 2014 February (64 objects). <u>http://www.astro.cornell.edu/research/parallax/</u> Nearly 40 of 64 are obtain by VLBI, others by timing, optical.

The 64 pulsar parallax distributions

Current CVN stations

SHAO-DiFX

Ad hoc platform, 2012

60 CPUs, 2013

400 CPUs, 2014

Performance and operations

- 1 Astrophysics: domestic VLBI observations, east Asia VLBI network fringe test.
- 2 Geodesy: domestic geodetic observations, began to process some CRF, AOV and APSG IVS sessions in 2015.
- 3 Achieve speed of 10 stations, 1Gbps/station.
- 4 Some other test experiments.

Station positions

Accuracy is within several millimeter.

Param.	Sheshan	Kunming	Urumqi
X (m)	-2831686.99300	-1281152.42700	228310.63100
Y (m)	4675733.63900	5640864.40000	4631922.76600
Z (m)	3275327.64100	2682653.63000	4367063.97100

Reference MJD, 51544.0

Experiment of MSP J1939+2134

- MSP: 1.56 ms period, 14 mJy @ 1400 MHz
- Stations: Sheshan 25 m, Kunming 40 m and Urumqi 25 m, 8 h.
- Frequency band: S band (2180-2436 MHz)
- Phase reference source: J1935+2031 (1.48 degree separation, 0.04 mas in RA, 0.06 mas in DEC)
- Recording rate: 1 Gbps, 16 channel x 16 MHz
- Correlation: Pulsar gating in DiFX
- Epochs: 4, from 2012.4.8-2015.4.25

4 epoch positioning of MSP J1939+2134

Experiment of Pulsar B0329+54

- B0329+54: 0.7145s period, 203 mJy @ 1400 MHz
- Stations: Sheshan 25 m, Kunming 40 m and Urumqi 25 m, 8h.
- Frequency band: S/X band, 2240/8400 MHz
- Phase reference source: J0337+5557 (2.53 degree separation, 0.31 mas in RA, 0.48 mas in DEC)
- Recording rate: 1 Gbps, 16 channel x 16 MHz
- Correlation: Pulsar gating in DiFX
- Epoch: 1, 2015.2.15

Preliminary results

The analysis is undergoing...

A S/X dual frequency observation on pulsar B0329+54 with CVN.

Learn from VGOS system

- Bandwidth synthesis -> multiband synthesis
- Improve UV coverage
- Involve more visibility data, improve the sensitivity

UV coverage

Learn from VGOS system

- Ionosphere correction
- Not only the ionosphere of the earth but also the ISM induce the phase dispersion.

 $DM = \int ds n_e$ Dispersion Measure

Ionosphere free linear combination

$$\tau_{if} = \frac{f_{gx}^2}{f_{gx}^2 - f_{gs}^2} \tau_{gx} - \frac{f_{gs}^2}{f_{gx}^2 - f_{gs}^2} \tau_{gs} \,.$$

Learn from VGOS system

- RFI
- L, S band are problematic for geodesy, it is also a very bad news for pulsar observation!

Figure 1: RFI spectrum for the Shanghai Sheshan telescope site

Remarks

- More observations are planning for the pulsar astrometry, more antenna are welcome.
- Experience in geodesy can share with pulsar astrometry.
- Higher accuracy and higher density distribution of calibrator sources are still in great demanding.
- Astrometry do astrophysics, such as in the case of pulsar astrometry.
- Wide band receiver and data recording system are beneficial to all astronomers.

Thank you!

