
The Southern Hemisphere AUSTRAL Program: A Pathway to VGOS

Jim Lovell, Jamie McCallum, Lucia Plank, Elizaveta Rastorgueva-Foi, Stas Shabala : University of Tasmania

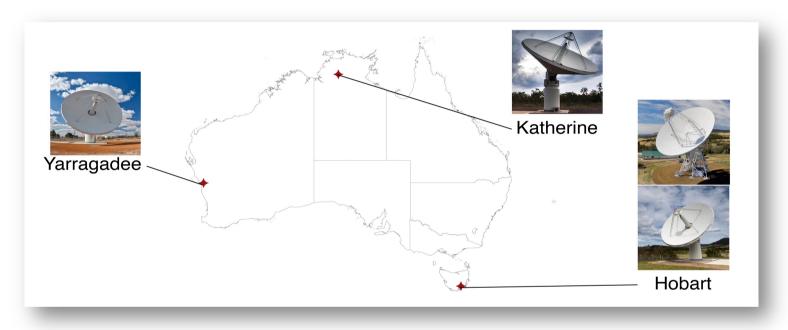
David Mayer, Johannes Böhm : Technical University of Vienna

Oleg Titov : Geoscience Australia

Jonathan Quick : Hartebeesthoek Radio Astronomy Observatory

Stuart Weston, Sergei Gulyaev, Tim Natusch : Auckland University of Technology

Cormac Reynolds, Hayley Bignall : Curtin University

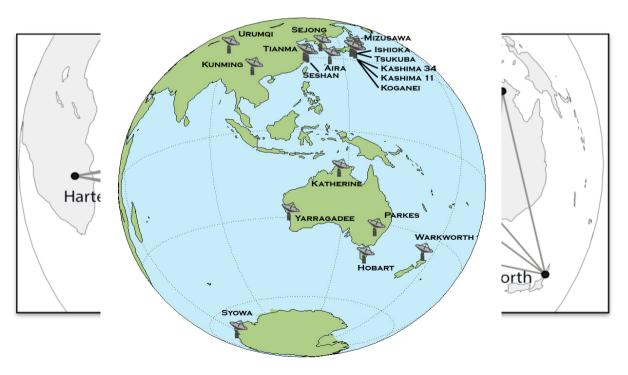

Jing Sun : Shanghai Astronomical Observatory

Alexander Neidhardt : Technical University of Munich

The Challenges of VGOS

- Continuous operations
- Centralised remote operations
- Broad bandwidths and high data rates
- Fast data turnaround
- Feedback:
 - Closing the loop from scheduling to analysis to scheduling
 - During observations: Dynamic observing
- How best to use twin telescopes

AuScope VLBI Array: 2010 - 2015



- 3 x 12m telescopes. Small, fast
- Room temperature SX, 3500 Jy
- DBBC2, Mark5B+
- Operations centre at UTAS
- Correlation at Curtin Uni (WA)
- Scheduling and analysis capability in collaboration with TUW

The AUSTRAL Program

- 120 days per year. AuScope (100%) + Warkworth (50%) + Hart15 (50%)
- Aims
 - 11 days of strometry to monitor and enhance the southern hemisphere celestial reference frame (~6 sessions including Parkes 64m);
 - 184 days of geodesy to improve the southern hemisphere terrestrial reference frame and the baseline time series;
 - 2 x 15-day CONT-like sessions to densify the time series and investigate a range of observing strategies.
 - 6 sessions changed to AOV for regional geodesy and astrometry (Poster P2-02)
- Scheduling in ViEVS

- 1 Gbps data rates (4 x R1/R4 rates)
- Correlation at Curtin
- Analysis at UTAS

AuScope and the AUSTRAL program can address some of the challenges

- We don't have:
 - Broadband systems yet
 - Fast networks to all antennas, so no fast turnaround
 - Enough funds for 24/7 operations.
- But we do have:
 - Small, fast antennas
 - Funding for ~60% of continuous operations
 - An operations centre
 - DBBCs and Mark5B+ : high-ish data rates
 - Twin sibling telescopes

VGOS

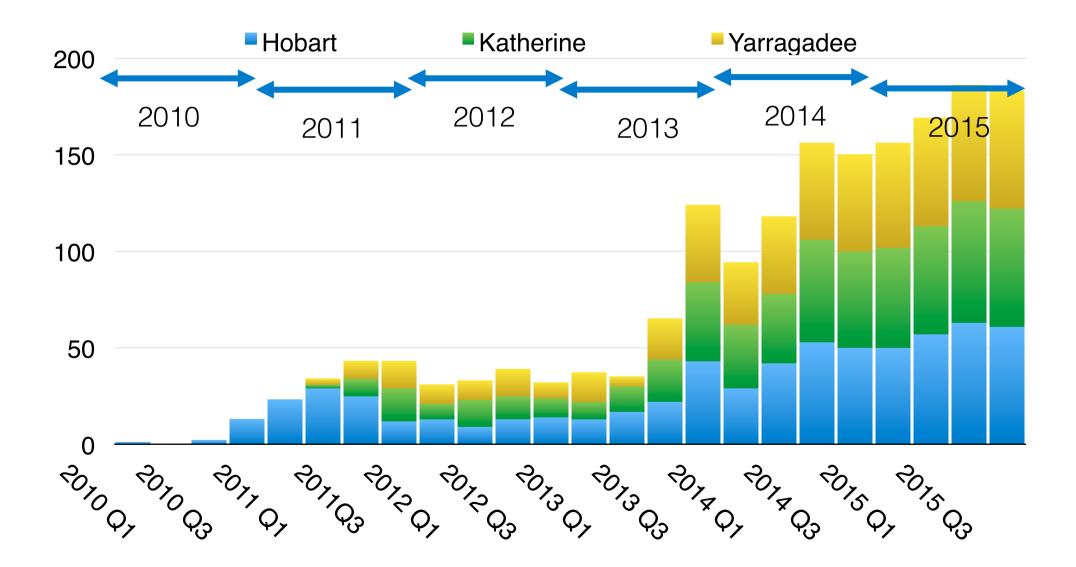
- Centralised remote operations
- Continuous operations
- Broad bandwidths andhigh data rates
- Fast data turnaround
- Feedback
- Twin telescopes

Centralised Remote Operations

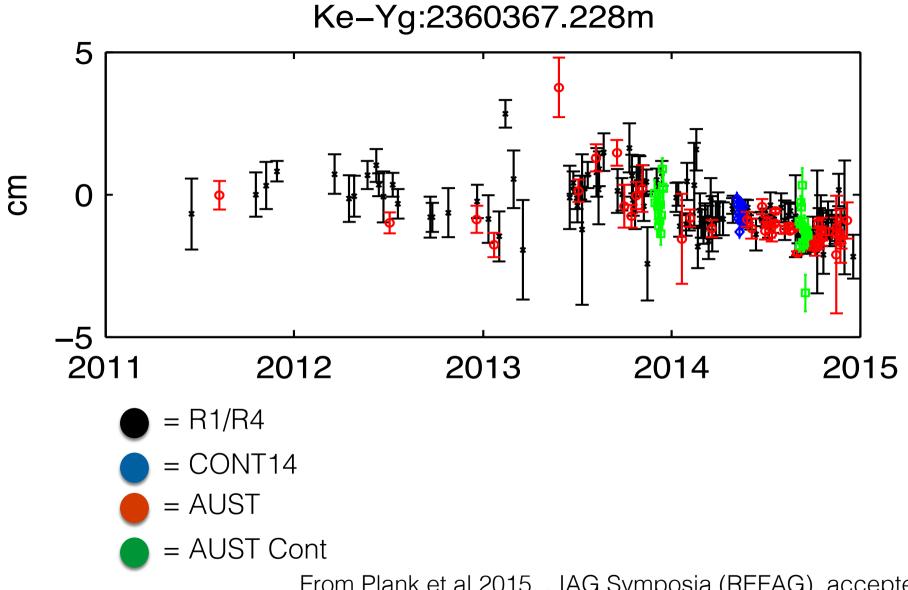
Remote Operations

- All AuScope antennas and Parkes are remotely operated.
 Monitor Ht, Ww
- ERemoteCtrl (Wettzel)
- MONICA (CSIRO)
- PCFS (NASA)
- jive5ab (JIVE)

Continuous Operations


.eague	table	Full table 🗘	All 🗘	Primeir	a Liga	Lea	ague C	up	Charr	npions	League
Pos.	Team			GP	Pts	W	D	L	GF	GA	+/-
1	SL Benfica			33	82	26	4	3	82	15	67
2	FC Porto			33	79	24	7	2	72	13	59
3	Sporting Lisboa	3		33	73	21	10	2	66	29	37
4	Sporting Braga			33	55	16	7	10	50	28	22
5	Vitória Guimará	ăes		33	52	14	10	9	46	33	13
6	Paços de Ferrei	ira		33	47	12	11	10	40	42	-2
7	Belenenses			33	45	11	12	10	32	35	-3
8	Marítimo			33	44	12	8	13	45	41	4
9	Rio Ave			33	43	10	13	10	38	41	-3
10	Nacional Madeira			32	41	11	8	13	41	46	-5
11	Moreirense FC			33	40	10	10	13	31	41	-10
12	GD Estoril			33	37	8	13	12	36	56	-20
13	Boavista FC			32	34	9	7	16	27	47	-20
14	Académica Coi	mbra		33	29	4	17	12	24	42	-18
15	Vitória Setúbal		De - 20- 3		20	7	- 34	10	24	F4	7-
16	FC Arouca		1000	Sec. 1	-	and the	1			and a	
17	Gil Vicente		ALL ALL	inter an	21	25	15	14	1000	Colors -	-
18	FC Penafiel		See 2		in the second	100	27	ile an	Lina	1.12	all.
Chai	mpions League	Champions League 2	1 Star	1. 1°.	SA ANY		1	1.1			-

We're Busy: 2015 Schedule

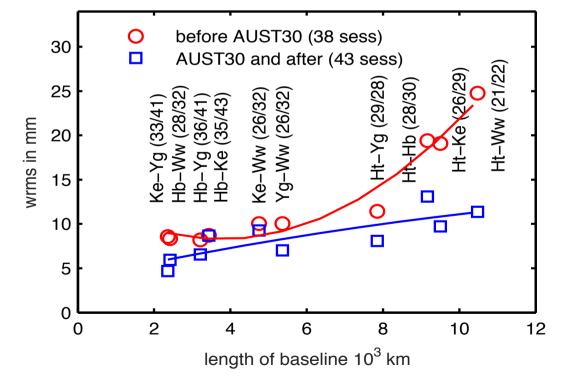

Station	Number of Sessions	AUST Cont	AUST Geo	AUST Astro	Total AUSTRAL
Ke	232	30	79	11	120
Hb	231	30	79	11	120
Yg	231	30	79	11	120
Ht	170	30	26	4	60
Wz	133				
Ny	123				
Ww	120	30	36	9	75
Kk	104				
Ft	86				
Ts	60				

We're Busy

Dense time-series

- Identify systematics, trends on shorter timescales
- Comparison of GNSS and VLBI

From Plank et al 2015., IAG Symposia (REFAG), accepted

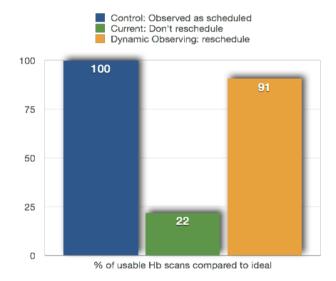

Broad bandwidths, high data rates

- AUST data rates are currently 1 Gbps (16 MHz IFs, 2 bit). compensates for higher SEFD of small antennas with room temperature SX systems.
- 30 ps delay residuals being achieved (CONT14 levels) but 50 ps is more typical. Cause?

Feedback

Post-session feedback: Scheduling Optimisations

Scheduling strategy changed after AUST30. Stronger sources and algorithm changes gave a 2 x increase in scans per day.

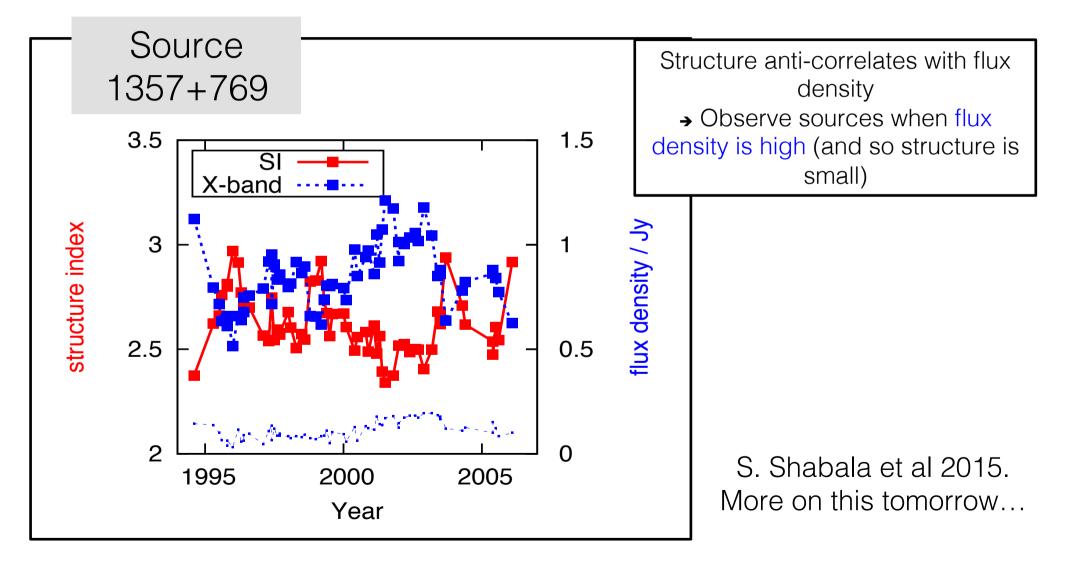


From Plank et al 2015. , IAG Symposia (REFAG), accepted

Intra-session optimisations: Dynamic Observing

- Feedback from telescopes and correlator in real-time to optimise schedule onthe-fly
- Requires centralised operation of array, good networks etc.

- Advantages in re-scheduling in real time:
 - Simulation of antenna with poorer than expected sensitivity

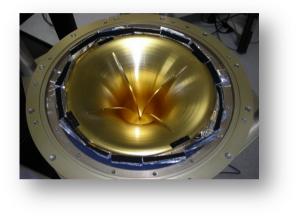


Scenario	Number of scans	Number of observations	Number of successful Hb observations	% successful Hb observations
Observed as scheduled	804	1498	394	100
Current: Don't reschedule	652	1190	86	22
Dynamic Observing: reschedule	793	1470	357	91

Source structure feedback

- Source structure mitigation strategies.
 - Position shifts when a baseline resolves the jet
 - Variability = structure
 - Scintillation = stability

Variability = structure


Twins

• See poster P2-01

What Next

 Broadband upgrade to 3 AuScope telescopes. Callisto feeds (Poster P1-01), new DBBCs, Mark6 or Flexbuf

- Source structure mitigation strategies.
 - Avoid/flag scans when a baseline resolves the jet
 - Sidereal scheduling trials
 - Variability monitoring (feedback)
- Implement and test some DO ideas (antenna wind stow)
- Further scheduling optimisation tests with ViEVS and eRemoteCtrl
- Trial shared operations
- Correlation moving to UTAS in September (turn-around time should drop)
- More twin (sibling) telescope trials with Hobart 12m and 26m

Variable source structure for 9-year-olds.