Options for VGOS observations and analysis in 2020 (and beyond)

Hayo Hase, BKG Dirk Behrend, NVI Axel Nothnagel, IGG Harald Schuh, GFZ

EVGA Meeting, Ponta Delgada, May 18-21, 2015

Some VLBI Definitions

- **observation**: VLBI-time delay measured by two network stations (one baseline)
- scan: multiple VLBI-time delays measured by more than two stations simultaneously on the same source (> two baselines)
- **session**: collection of VLBI observations or VLBI scans within a continuous time interval (i.e. 24h)
- **experiment**: session exploring the VLBI method (with the risk of failing)

Current VLBI vs. VGOS observations

- S/X band
 - 2.2-2.35, 8.1-8.9 GHz
- session based
 - i.e. R1, T2, R4, ...
 - 400 scans/24h

- broadband
 - 2-14 GHz
- initially session based, later continuous obs.
 - ≥2880 scans/24h

If we would produce continuous VLBI data streams, what would be the meaning of a VLBI session?

Current VLBI vs. VGOS observations

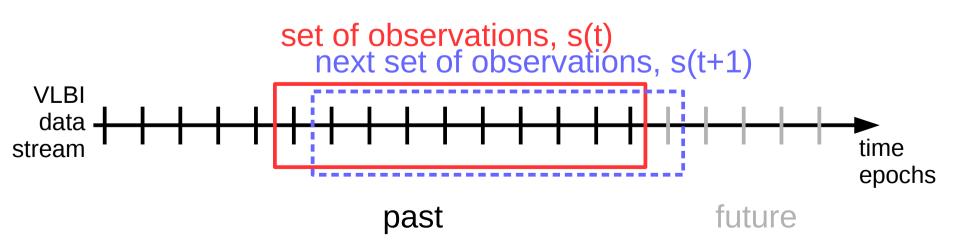
- S/X band
 - 2.2-2.35, 8.1-8.9 GHz
- session based
 - i.e. R1, T2, R4, ...
 - 400 scans/24h
- good for IVS product:
 - TRF
 - CRF

- broadband
 - 2-14 GHz
- initially session based, later continuous scans (24/7)
 - ≥2880 scans/24h
- good for IVS product:
 - length of day (LOD)
 - scale

Current VLBI vs. VGOS observations

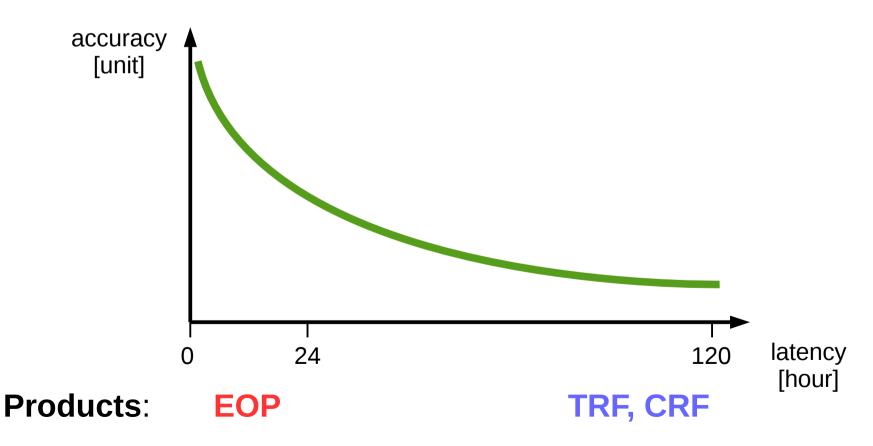
- S/X band
 - 2.2-2.35, 8.1-8.9 GHz
- session based
 - i.e. R1, T2, R4, ...
 - 400 scans/24h
- good for IVS product:
 - TRF
 - CRF

- broadband
 - 2-14 GHz
- initially session based, later continuous scans (24/7)
 - ≥2880 scans/24h
- good for IVS product:
 - length of day (LOD)



In a continuous VLBI data stream, the smallest unit is the single VLBI observation itself! In a continuous VLBI data stream, the smallest unit is the single VLBI observation itself!

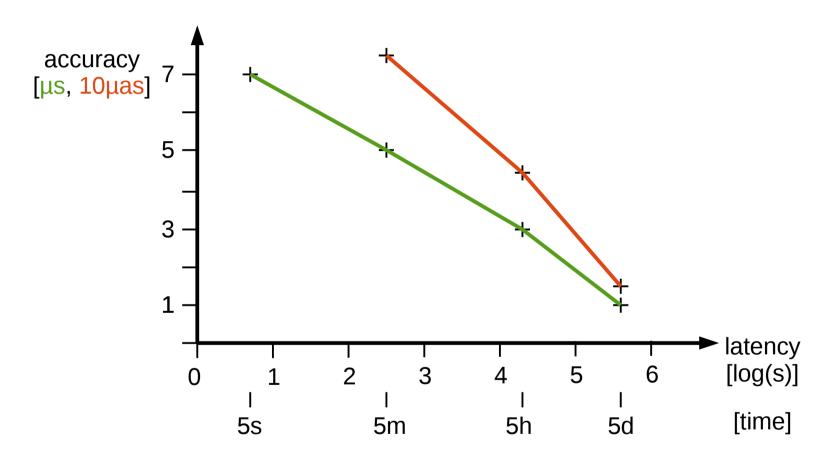
But we need more than one observation in order to estimate parameters!


How to process continuous VLBI data streams?

- 1. Select a set s(t) of most recent VLBI observations from the correlator output data base.
- 2. Perform a parameter estimation at epoch t.
- 3. Add an incoming new VLBI observation to the set s(t+1), remove the eldest one from the set.
- 4. new epoch (t = t+1), go to step 2.

Accuracy vs. Latency in IVS products

• Latency: time interval between availability of observables and availability of IVS product



Product classes, latency, accuracy

Product class	Product epoch	Update interval	Epochs to be updated	Latency	Sub-product	expected accuracy (WRMS)
Ultra rapid	every 10'	every 10'	t, t-10'50'	5 s	UT1-UTC	7 μs
Rapid	every 1h	every 1h	t, t-1h5h	5 min	UT1-UTC	5 μs
					$X_{_{P}}, Y_{_{P}}$	75 µas
					nutation offsets	75 µas
Intermediate	every 6h	every 6h	t, t-6h18h	5 h	UT1-UTC	3 μs
					x _p , y _p	45 µas
					nutation offsets	45 µas
Final	every 12h UT	every 24h	t	5 days	UT1-UTC	1 µs
					x _P , y _P	15 µas
					nutation offsets	15 µas
					telescope coordinates	3 mm
					source position	15 µas

courtesy of A. Nothnagel

Accuracy vs. Latency in IVS EOP products (LOD, pole, nutation)

 Low latency products require one reliable automated analysis center!

How do we schedule continuous VLBI data streams?

Scheduling of continuous VLBI data streams

- chance to close the feedback loop by scheduling on the fly by reacting on
 - stations fading in and fading out
 - product performance
 - data drain via communication line and correlator load
- new optimization algorithms
 - product oriented
 - sky coverage
 - (partially integration of non-VGOS stations)

Conclusions: VGOS continuous data streams need

- New analysis strategies
 - automatization
 - VLBI-observation epoch oriented
 - (new treatment of auxiliary data)
 - (integration of non-VGOS observations)
- New scheduling strategies
 - scheduling on the fly
 - new optimization algorithms
- dedicated control and operation center(s)