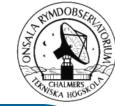
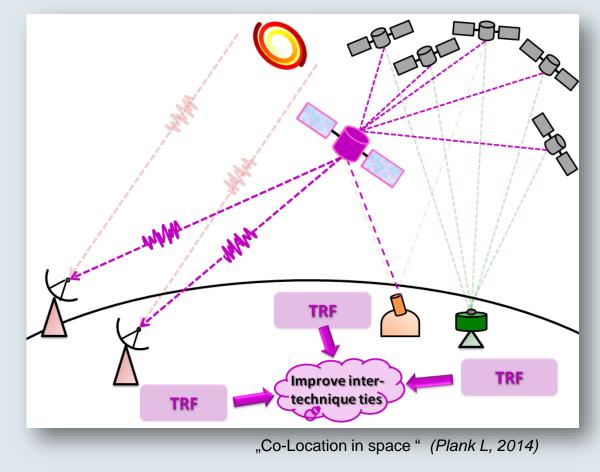


VIENNA UNIVERSITY OF TECHNOLOGY

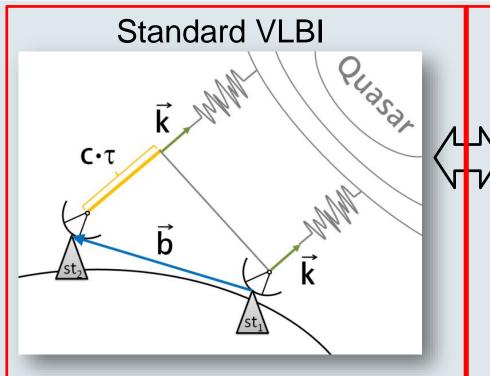

DEPARTMENT OF GEODESY AND GEOINFORMATION

22nd EVGA Working Meeting, May 17-21, 2015, Sao Miguel, Pont Delgada, Azores, Portugal

Scheduling of VLBI observations to satellites with the Vienna VLBI Software (VieVS)

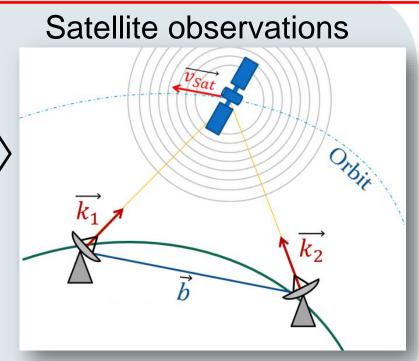

Andreas Hellerschmied¹,

J. Böhm¹, R. Haas², J. Kodet³, A. Neidhardt³, L. Plank⁴


- ¹ Technische Universität Wien, Austria
- ² Chalmers University of Technology, Onsala Space Observatory, Sweden
- ³ Technische Universität München, Geodetic Observatory Wettzell, Germany
- ⁴ University of Tasmania, Australia

VLBI satellite observations (1)

- Motivation for geodesy:
 - Establish inter-technique ties in space
 - Improved future ITRF realizations

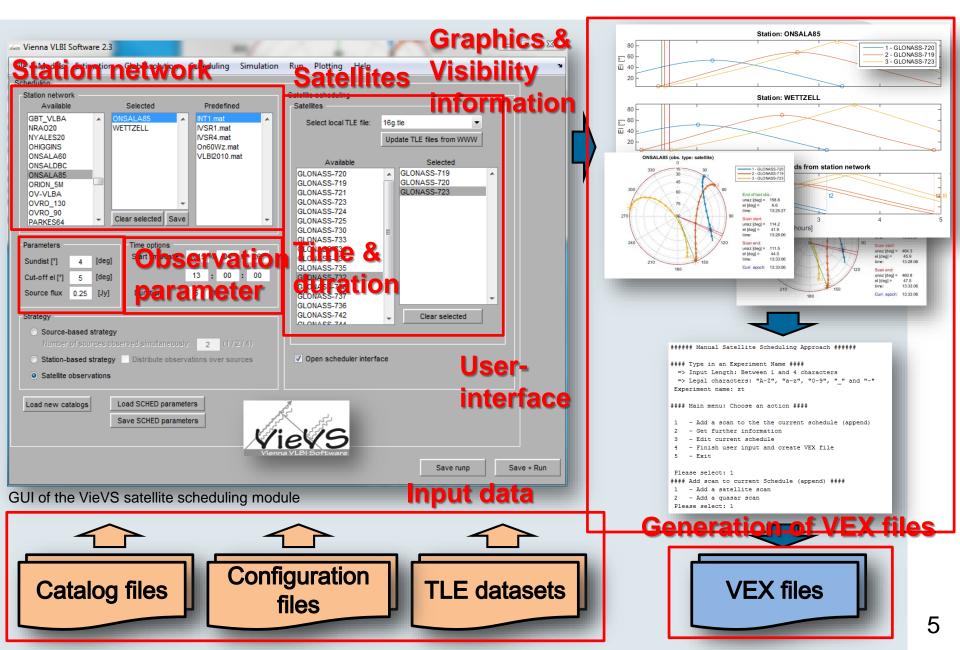


Natural radio sources (quasars)

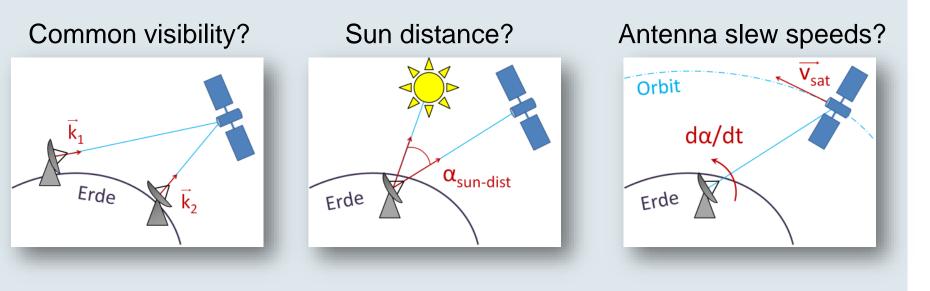
- At an infinite distance
- Parallel view directions \vec{k}
- Fixed points in the sky
- S/X-band

Artificial signal sources

- In the Earth's near field
- Different view directions $(\overrightarrow{k_1} \neq \overrightarrow{k_2})$
- Moving fast
- e.g. L-band for GNSS

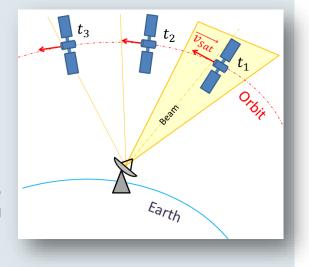

VLBI satellite observations (2)

- Suitable observation plans ("Schedules") are required
 - Defining the time sequence of a VLBI experiment
 - Generated by dedicated VLBI scheduling software
 - SKED (*Gipson J, 2012*)
 - VIE_SCHED (Sun J, 2014)
- → Problem: Available scheduling programs for geodetic VLBI did not support satellites as radio sources routinely.
- → Idea: Development of a satellite scheduling module for the Vienna VLBI Software (VieVS; Böhm et al., 2012).



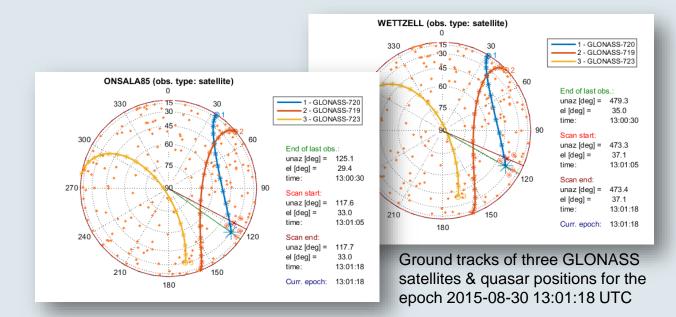
VieVS satellite scheduling module

Satellite observation conditions


Conditions for the temporal availability of satellites as observation targets:

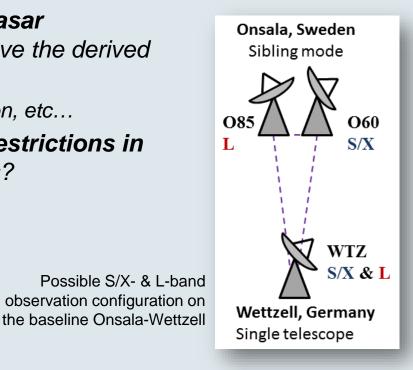
- Tracking of the **cable wrap**
 - → Calculation of slew times between scans
 - ➔ Check cable wrap limits

- VEX = Standard file format for VLBI observation plans
- Provide all required information to carry out a VLBI session
 - Observation sequence, source positions, receiver setup, etc...
- "Stepwise" satellite tracking with VEX files
 - Sequence of discrete positions (topo. Ra/Dec)
 - Feasible for standard VLBI antennas



Principle of stepwise satellite tracking

- "VEX 2.0" (<u>https://safe.nrao.edu/wiki/bin/view/VLBA/Vex2</u>)
 - Inclusion of TLE orbit data
 - Improved satellite tracking in combination with satellite tracking features of the Field System



- Combination of quasar- and satellite-scans in one schedule
- New possibilities:
 - Satellite positions in the CRF, reveal gaps in the local ties, etc...
- Observation restrictions due to limited receiver capabilities
 - e.g. S/X- versus L-band (GNSS)

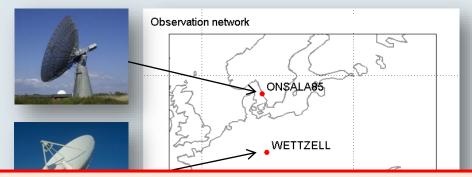
Future scheduling strategies

- Open questions:
 - How to combine satellite and quasar observations reasonably to improve the derived geodetic parameters?
 - Scan sequence, source distribution, etc...
 - How to handle station-depended restrictions in the observable frequency bands?
 - etc...

→ Next step: Combination of scheduling and simulation/analysis (Plank, 2014) tools in VieVS to investigate suitable scheduling strategies for satellites.

Experiments: WTZ – ONSALA85

• Scheduled with


- Onsala, Sweden:
 - R. Haas
 - 25 m antenna, L-band feed
- Wettzell, Deutschland
 - A. Neidhardt

Data correlation and preliminary results

- → Next talk: R. Haas et al., GLONASS-VLBI: Onsala-Wettzell test observations
- Four test sessions, one hour duration each
 - 16. January 2014: G140116a, G140116b
 - 21. January 2014: G140121a, G140121b

(Hellerschmied et al., 2014)

- → GLONASS satellites
 - L1 band signals (1602.56 - 1615.5 MHz)

• VieVS Satellite Scheduling Module

- Planning of real VLBI satellite observations
- Generation of schedule files (VEX Format)
- Combination of quasar- and satellite scans
- ✓ Successfully applied for test observations in January 2014
- No automatic source selection so far
- Planned simulation studies with VieVS based on realistic schedules to find suitable scheduling strategies for VLBI satellite observations

VIENNA UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF GEODESY AND GEOINFORMATION

Questions?

Contact: andreas.hellerschmied@geo.tuwien.ac.at

References:

- Böhm J et al. (2012), The New Vienna VLBI Software, Proceedings of the 2009 IAG Symposium, Buenos Aires, Argentina, 31 August 2009 - 4 September 2009, Series: International Association of Geodesy Symposia, Vol. 136, Kenyon S, Pacino MC, and Marti U (eds.), ISBN 978-3-642-20337-4, pp. 1007-1012.
- Gipson J (2012), SKED VLBI Scheduling Software, program manual, NASA Goddard Space Flight Center
- Hellerschmied et al. (2014), Observing satellites with VLBI radio telescopes practical realization at Wettzell, 8th IVS General Meeting, Shanghai, March 2014.

Kodet J et al. (2014), Co-locations of Space Geodetic Techniques on Ground and in Space, 8th IVS General Meeting, Shanghai.

Plank L (2014), Precise station positions from VLBI observations to satellites: a simulation study, J Geod, 88: 659–673.

Sun J et al. (2014), New VLBI2010 scheduling strategies and implications on the terrestrial reference frame, J Geod, 88: 449-461