Software Development for D-VLBI Scheduling and Analysis of Spacecraft Observations

James M Anderson¹, Li Liu¹, Robert Heinkelmann¹, Harald Schuh^{2,1}, Kyriakos Balidakis¹, Susanne Glaser², Maria Karbon¹, Cuixian Lu¹, Julian Andres Mora-Diaz¹, Tobias Nilsson¹, Benedikt Soja¹
anderson@gfz-potsdam.de

¹Deutsches GeoForschungsZentrum GFZ ²Technische Universität Berlin

> EVGA 2015 2015-05-18

Outline

- 1 D-VLBI and Challenges for D-VLBI to Spacecraft
- Scheduling Software
- 3 Processing Software
- 4 Future Plans

Overview

D-VLBI (differential VLBI)

- Known as phase referencing in the astronomical VLBI community for ≥ 30 years
- Corrects for errors in the atmosphere (troposphere, ionosphere), instrument (clock, cable delays), and delay model (EOPs) to provide accurate *relative* astrometry
- Absolute position uncertainty limited mostly by atmospheric propagation effects and the positional accuracy of the calibrator
- Velocity accuracy can be far better, limited by SNR, atmospheric effects, and unmodeled source effects

Scientific Goals of this Study

- Demonstrate the potential of D-VLBI for the establishment of frame ties to spacecraft and Solar System dynamical reference frames with the ITRF and **ICRF**
- Moving targets require different D-VLBI observing and analysis strategies from stationary, astronomical D-VLBI — test various methods to learn what works best
- Perform test observations on different spacecraft orbit types, including LEO. GNSS Lunar, and Lagrangian orbit.

Geocentric Parallax

Credit: ESA/ATG medialab/ESO/S. Brunier (2004), NASA/Sean Smith (2008), Norman Kuring, NASA/GSFC/Suomi NPP (2012), and USAF (2010)

- Telescopes must point in different directions
- There is effectively no VLBI standard way to observe nearby/moving targets
 - VEX 1.5b1 supports Earth satellite orbital parameters, but not spacecraft outside of Earth orbits
 - Few stations provide a Field System/station interface mechanism supporting moving targets without human intervention — crucial for D-VLBI observations (the VLBA is a significant exception here)
 - Need VEX 2.0, Field System, and station interface support in future
- ullet For now, must separately schedule each station with topocentric $(lpha,\delta)$, add correlator hack

Moving Near-Field Targets and Phase Calibrators

- Each station sees the target in a different direction (Geocentric parallax)
 - Result: different stations require different phase calibrators
 - Depends on projected baseline distance, distance to spacecraft, maximum allowed angular separation
- As the spacecraft moves, the stations must look in different directions
 - Result: stations require different calibrators as a function of time. For GNSS satellites, new calibrators will be needed every few minutes; at L2, new calibrators will be needed on daily timescales
- Many, many phase calibrators and calibrator scans must be used — need an automated system to select and schedule calibrators and targets
 - For an hour-long GNSS D-VLBI experiment with 6 stations, \sim 25 calibrators and \sim 100 scans will be used

VieVS@GFZ Spacecraft Scheduling Software

Based on earlier VieVS satellite scheduling software

Example of a VLBA Subarray for GPS Observations

- Need L band receivers for GPS L1 and L2 signals
- Need short enough VLBI baselines for common satellite visibility
- Need high sensitivity for D-VLBI calibrator observations
- VLBA and EVN (European VLBI Network) arrays ideal for test cases

Sky Plots for the VLBA Network Example

Skyplot for the station FD-VLBA (18.05.2015 at 10:00)

- 12 minutes of schedule planning time shown
- Blue points: GPS satellites, plotted every 6 minutes
- Red points: all possible phase calibrator sources within angular separation cutoff

Calibrator Selection

- Phase calibrator list includes sources from the VI BA Calibrator List (NRAO 2015) (as well as the Radio Fundamental Catalog, Petrov 2015)
- Selection Criteria
 - Angular distance between spacecraft and calibrator, Sun, horizon, ...
 - Position accuracy
 - Absence of source structure
 - Flux density for appropriate baseline length, with spectral index correction to observing frequency
 - Station sensitivities and maximum phase-referencing cycle time (atmospheric coherence time for the target-calibrator separation) used to generate flux-density cutoff limit

Source 12h23m39 336605s +46d11'18 60268 14h43m56.892189s +25d01'44.49069 GSEC GSEC

 Links to calibrator images and data to be provided when run interactively

Bad. strucaffects ture snapshot measurement position

Plots for Scheduling Results

Scheduling for Station PIETOWN to GPS satellites

- 60 minutes of observing time shown here
- One plot per station, showing detailed target locations for each scan and the calibrators used for all stations
- Allows visual inspection of target—calibrator geometries to verify software-based selections

Scheduling Output

Scheduling file

			_						
2015	5	18	10	0	0.00	FD-VLBA	LA-VLBA	1221+464	qq
2015	5	18	10	0	0.00	FD-VLBA	KP-VLBA	1221+464	qq
2015	5	18	10	0	0.00	FD-VLBA	PIETOWN	1221+464	qq
2015	5	18	10	0	0.00	FD-VLBA	OV-VLBA	1221+464	qq
2015	5	18	10	0	0.00	LA-VLBA	KP-VLBA	1221+464	qq
2015	5	18	10	0	0.00	LA-VLBA	PIETOWN	1221+464	qq
2015	5	18	10	0	0.00	LA-VLBA	OV-VLBA	1221+464	qq
2015	5	18	10	0	0.00	KP-VLBA	PIETOWN	1221+464	qq
2015	5	18	10	0	0.00	KP-VLBA	OV-VLBA	1221+464	qq
2015	5	18	10	0	0.00	PIETOWN	OV-VLBA	1221+464	qq
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	SC
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10		16.00		OV-VLBA	PG19	sc
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	SC
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	SC
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	#C
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10	0	16.00	PIETOWN	OV-VLBA	PG19	ac.
2015	5	18	10	0	27.00	FD-VLBA	LA-VLBA	1221+464	qq
2015	5	18	10			FD-VLBA	KP-VLBA	1221+464	qq
2015	5	18	10			FD-VLBA	PIETOWN	1221+464	qq
2015	5	18	10			FD-VLBA	OV-VLBA	1221+464	qq
2015	5	18	10			LA-VLBA	KP-VLBA	1221+464	qq
2015	5	18	10	0	27.00	LA-VLBA	PIETOWN	1221+464	qq
2015	5	18	10	0	27.00	LA-VLBA	OV-VLBA	1221+464	qq
2015	5	18	10			KP-VLBA	PIETOWN	1221+464	qq
2015	5	18	10	0	27.00	KP-VLBA	OV-VLBA	1221+464	qq
2015	5	18	10			PIETOWN	OV-VLBA	1221+464	gg
2015	5	18	10			PIETOWN	OV-VLBA	PG19	SC
2015	5	18	10	0	43.00	PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10			PIETOWN	OV-VLBA	PG19	SC
2015	5	18	10			PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10			PIETOWN	OV-VLBA	PG19	SC
2015	5		10			PIETOWN	OV-VLBA	PG19	sc
2015	5		10			PIETOWN	OV-VLBA	PG19	sc
2015	5	18	10	0	43.00	PIETOWN	OV-VLBA	PG19	sc

- Currently outputs .SKD and internal format files
- Will also develop output to keyin files for NRAO SCHED
 - Supports VLBA non-sidereal tracking
 - Support for SPICE data for scheduling non-sidereal tracking
 - VEX and .v2d support
 - Support for multiple phase centers
 - For times when in-beam calibration can be applied
 - GNSS in-beam calibration opportunity about once per hour per station for a 25 m diameter station and reasonable selection criteria

D-VLBI Processing Software Modifications: ATMCA

Based on Figure 1 of Fomalont & Kogan (2005). T indicates the target, and numbers indicate calibrator sources.

Different panels show different relative source orientations.

- For nearby spacecraft, multiple calibrators are necessary for D-VLBI because of Geocentric parallax and spacecraft motion
- ATMCA is an AIPS task to calculate and apply phase referencing calibration from multiple calibrators (see AIPS Memo 111, Fomalont & Kogan 2005)
- Colored lines have been overlaid to simulate spacecraft tracks viewed by three different stations
- Calibrator—target orientation categories can be different for different stations and change with time

ATMCA Modifications for Nearby/Moving Spacecraft

- Target direction different for each station
 - Target position must be calculated from satellite ephemerides rather taking the fixed (α, δ) coordinates in the AIPS SU (source) table.
- Target moves as a function of time
 - Calibration gradient on sky results in different calibration values at different locations
 - Phase calibration no longer constant for each scan
- Calibration algorithm (linear interpolation, 2-D gradient, assume only elevation gradient present, ...) may be different for each station, and may change with time
 - Original software has user select a single algorithm to use for all stations and times
- Different calibrator groups used for different directions in the sky the software should automatically select the appropriate calibrators to use from all available observations
- Development still in progress...

Future Plans

- Finish initial development and debugging
- Schedule, observe, process, and analyze test observations
 - Test D-VLBI and our software's performance for different spacecraft orbit types and observing frequencies
 - GNSS for nearby spacecraft
 - RadioAstron for distances out to roughly the Lunar orbit
 - Gaia for the L2 orbits
- Software tweaking
 - Improve calibrator selection criteria weighting
 - Add checks for in-beam opportunities
 - Add tuning option for maximizing velocity measurement accuracy (different calibrator selection, satellite repetition frequency)
- Extend automated VLBI processing scripts from the astronomical community for spacecraft D-VLBI

The End

Thank you for your attention

Acknowledgments: The presented research was done within the project Ties between kinematic and dynamic reference frames (D-VLBI) (SCHU 1103/4-1) as part of the DFG Research Unit Space-Time Reference Systems for Monitoring Global Change and for Precise Navigation in Space funded by the German Research Foundation (FOR 1503).

References I

- ESA/ATG medialab/ESO/S. Brunier. 2004. Gaia Mapping the Stars of the Milky Way, URL: http://www.esa.int/spac einimages/Images/2004/05/Gaia_mapping_the_stars_of_the_Milky_Way (visited on 10/15/2014)
- Fomalont, E., & Kogan, L. 2005. ATMCA: Phase Referencing using more than one Calibrator. AIPS Memo 111 (NRAO)
- NASA, 2012. Blue Marble, URL: http://visibleearth.nasa.gov/view_cat.php?categoryID=1484 (visited on 05/11/2015)
- NASA/Sean Smith, 2008. Super Moon, URL: http://asd.gsfc.nasa.gov/blueshift/index.php/2015/02/12 /no-mardi-gras-under-a-full-moon/ (visited on 05/11/2015)
- Norman Kuring, NASA/GSFC/Suomi NPP. 2012. The View from the Top, URL: http://visibleearth.nasa.gov/view.php?id=78349 (visited on 05/11/2015)
- NRAO, 2015. The VLBA Calibrator List. URL: http://www.vlba.nrao.edu/astro/calib/(visited on 05/12/2015)
- Petrov. L. 2015. Radio Fundamental Catalog. URL: http://astrogeo.org/rfc/ (visited on 05/12/2015)
- USAF. 2010. GPS Block IIIA Satellite, URL: http://en.wikipedia.org/wiki/File:GPS_Block_IIIA.jpg (visited on 10/15/2014)

More Plots for Scheduling Results

- 30 minutes of observing time shown here
- One plot per station showing detailed target locations for each scan and the calibrators used
- Allows visual inspection of target—calibrator geometries to verify software-based selections

