

IAA VGOS GPU-based Software Correlator: current status and broadband processing

Voytsekh Ken, Yana Kurdubova, Nadezda Mishina,

Vladimir Mishin, Violet Shantyr, Igor Surkis

Institute of Applied Astronomy, RAS St. Petersburg, Russia

22nd European VLBI Group for Geodesy and Astrometry, Azores, Portugal, May 17-21, 2015

Correlator specification

- Input data stream of up to 16 Gb/s from each of up to 6 VGOS stations:
 - > 2-bit sampling,
 - > 4 frequency bands:
 - 2 polarizations, 512 MHz bandwidth, or
 - 1 polarization, 1024 MHz bandwidth
- Cross-spectra resolution of up to 4096 spectral channels (near-real time)
- Extracting 32 phase calibration tones (near-real time)
- VDIF data format
- Group delay < 10 ps</p>

2

Main design concepts

FX type

- Usage Graphical Processing Units (GPU) for bit repacking, fringe stopping, FFT, spectra multiplication and pcal extracting
- HPC cluster based on the hybrid blade servers (2 CPU + 2 GPU)
- Bit stream transformation is perfored in the GPU DRAM

HPC cluster

4

November, 2014:

- > 40 compute servers
- o 2 Intel E6-5-2670 8-core, 2.6 GHz
- \circ 2 Nvidia Tesla K20
- o 256 GB RAM (8 servers)
- o 64 GB RAM (32 servers)
- > 56 Gbps Infiniband
- ➢ 16x10GbE
- Panasas data storage 75 TB
- Linux Centos 6
- > 96 kW APC UPS
- > 3 A/C Stulz

16 Gbps input stream, 4096 channels, 4 freq. bands

Stations	Polarizations	Baselines	GPUs	Blade servers
2	1	3	8	4
2	2	10	14	7
3	1	6	10	5
3	2	21	22	11
4	1	10	14	7
4	2	36	27	14
5	1	15	16	8
5	2	55	41	21
6	1	21	22	11
6	2	78	55	28

Correlator topology

Station module

<u>Input:</u> VGOS data (16 Gbps) <u>Processing:</u> VDIF decoding, delay tracking, pcal extracting, bits repacking <u>Output:</u> bit stream (16 Gbps)

Correlation module

<u>Input:</u> bit stream (1.5 Gbps) <u>Processing:</u> fringe stopping, FFT, spectra multiplication <u>Output:</u> cross-spectra data (1.25 Mbps per accumulation period)

Head module (Correlator Control System)

Control, streams distribution, logging etc

See more: Ken V. et al. Design of a VGOS Software Correlator Based on GPUs // VGOS: The New VLBI Network. IVS 2014 General Meeting Proceedings / eds: D.Behrend, K. Baver. – 2014. P.183-187

22nd European VLBI Group for Geodesy and Astrometry, Azores, Portugal, May 17-21, 2015⁶

Correlator Control System (CCS)

7

Main goals:

- Provide complete status and errors information for the whole system to the operator
- Provide all in one GUI and console tools for data processing and transfer control

Current development status:

Most components are usable but some are still under active development

Estimated time to complete and test the whole system is 2-3 months.

CCS command/data flow light version

Correlator Control System (CCS)

22nd European VLBI Group for Geodesy and Astrometry, Azores, Portugal, May 17-21, 2015

8

Correlator benchmark test

Ru-TEST108 (04.09.2014) was carried out with the following setup:

- Zelenchukskaya Badary
- Bandwidth 512 MHz
- 2 bit sampling

Benchmark mode:

- 4 freq. bands
- 2 polarizations (16 Gbps)
- 4096 channels
- 30 sec scan

78 fringes in one freq. band, 312 fringes total

Correlator benchmark test

22nd European VLBI Group for Geodesy and Astrometry, Azores, Portugal, May 17-21, 2015

10

Comparison DiFX and IAA correlator

11

Ru-TEST108 (04.09.2014), Zc-Bd (RT-32), 512 MHz

Spectral density of Badary (up)

DiFX - red, IAA correlator - blue

Ephemeris data is the same, residual IAA fringe rate is 0.7 ps/s

New VGOS telescopes test

- Ru-TEST119 (16.04.2015)
- Zelenchukskaya Badary (RT-13) base
- 512 MHz bandwidth
- S/X Band
- Source 0212+735

Near future plans

- Correlator control system (3 months)
- Postprocessing software (this year)
- Joint processing with the BRAS and DBBC system (we hope this month)

Thank you!

