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Abstract To fulfill the requirements on local-ties for-
mulated by GGOS, high precision instruments and rig-
orous uncertainty propagation are necessary. To eval-
uate the results of e.g. high performance total stations
or laser trackers, the accuracy-limiting parameters of
the measurement process have to be quantified and pro-
jected onto an uncertainty model. Using the generally
across disciplines accepted Guide to the Expression of
Uncertainty in Measurement (GUM) a transparent and
traceable stochastic model can be derived. A Cartesian
coordinate-based bundle adjustment is suggested, to in-
tegrate the local measurements into a global context
avoiding gravitational influences. The included com-
prehensive uncertainty model is based on a specific
geometric model of a polar measurement system and
takes instrument specific and target dependent error pa-
rameters into account.
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1 Introduction

An interdisciplinary collaboration requires standard
notations and terminologies as well as the acceptance
of analytical procedures. An analysis must be transpar-
ent and traceable. In the field of metrology, the Guide
to the Expression of Uncertainty in Measurement
(GUM) was introduced in 1995 and supplemented in
1999 (cf. GUM (2008a), GUM (2008b)). The GUM
specifies two distinct types of uncertainty classes
called type-A and type-B. Whereas uncertainties
of type-A are based on methods of evaluation of
uncertainty by statistical analysis of multiple readings
of the same measurement, type-B uncertainties make
use of non-statistical approaches. The application of
statistical analysis like the method of least-squares or
the usage of Monte-Carlo techniques is well known in
geodesy and are counted among type-A uncertainties.
In the easiest case, the result is given by the sample
mean, and the corresponding type-A uncertainty is
represented by the experimental standard deviation
called standard uncertainty. Type-B uncertainties are
evaluated by scientific knowledge or experiences
about the measurement process, calibration reports
or manufacturer specifications, and cannot be ob-
tained from repeated measurements. The combined
standard uncertainty that contains type-A as well as
type-B uncertainties is derived by the propagation of
uncertainties (cf. GUM (2008a)). Although modern
instruments like GNSS antennas, total stations, laser
scanners and high precision laser trackers provide the
coordinates of an observed position at the push of a
button, complex background processes and the amount
of parameters influencing and limiting the accuracy
have to be kept in mind.
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The following sections describe several effects that
restrict the accuracy of a polar measurement. By as-
signing the identified error parameters and their cor-
responding uncertainties to the measurement process,
type-A as well as type-B uncertainties of an observed
position can be estimated and introduced during the
network adjustment.

2 Coordinate-based network adjustment

In classical geodesy, the observed polar observations
are combined during a network adjustment to derive
spatial coordinates and corresponding uncertainties.
Depending on the extent of the local network and the
accuracy requirements, the influence of the curvature
of the earth cannot be neglected. To overcome the
influence of the inclination, different analysis strate-
gies are developed (e.g. Schwarz (1994), Awange and
Grafarend (2005)).

2.1 Functional model

In metrology, the influence of the curvature of the earth
is mostly disregarded, because instruments like coor-
dinate measuring machines and laser trackers are un-
related to the gravity field. Fig. 1 depicts a local tie
measurement at the Onsala Space Observatory with a
laser tracker LTD840, which is not related to the grav-
ity field. To combine several stations, coordinate-based
algorithms are developed in metrology (e.g. Calkins
(2002), Lösler and Eschelbach (2012)).

Fig. 1 Local Tie Measurement at Onsala Space Observatory with
Leica Laser Tracker LTD840.

For this purpose, the polar observations of the ith
point p of the jth station are converted into Cartesian
spatial coordinates
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Here, the slope distance is denoted by d, and Θ and Φ

are the yaw and pitch angle w.r.t. the local station coor-
dinate system, respectively. The usage of Eq. 1 assumes
a perfect instrument. Fig. 2 shows possible deviations
from the ideal case, e.g. an axis-offset or misalign-
ment of the distance measurement unit. Most of these
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Fig. 2 Irregularities of a Polar Measurement Instrument (Hughes
et al., 2011).

errors are compensated by the manufactures firmware
and only a few errors can be rechecked by the instru-
ment operator. Based on the work of Muralikrishnan
(2009), a compensation model for mobile laser track-
ers is suggested by Hughes et al. (2011). The corrected
slope distance d̂ results by adding the distance depen-
dent scaling factor µ and the displacement offset λ .

d̂ = (1+µ)d +λ (2)

The angle encoder errors are parameterized as Fourier
series.

Θ̂ = Θ +
nq

∑
q=1

(aΘ ,q cosqΘ +bΘ ,q sinqΘ) (3)

Φ̂ = Φ +aΦ ,0 +
nq

∑
q=1

(aΦ ,q cosqΦ +bΦ ,q sinqΦ) (4)
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where aq and bq represents the Fourier coefficients.
The harmonic order of the Fourier series can be re-
stricted to the order of nq = 2 (Lewis at al., 2011).

The conversion of the polar observations into their
Cartesian representation w.r.t. the irregularities of the
observation instrument can be expressed by

pi, j(Θ̂ ,Φ̂ , d̂) = p0 +b(Θ̂ ,Φ̂)+ d̂n(Θ̂ ,Φ̂) (5)

with
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The vector p0 summarizes the coordinates of the sta-
tion and b considers the axis-offset eΘ ,Φ and the cen-
tering error of the distance measurement unit td =(

td,x td,y td,z
)T . The trunnion axis error κ and the hori-

zontal collimation error ν are compensated by the vec-
tor n. Even if the model was derived for laser trackers,
it is also valid for total stations and laser scanners.

A conformal spatial seven-parameters transforma-
tion is used to combine the observed coordinates pi, j

of the jth station with the global coordinate system Pi.
The global datum can be defined as (local) topocentric
coordinate system or as a global geocentric one like the
ITRF.

pi, j = T j +m jR jPi (8)

Here, T denotes the translation vector, m is the scal-
ing parameter, which is applied uniformly to all axes,
and R represents the rotation matrix. A common Gauß-
Markov model can be used (e.g. Mikhail and Acker-
man (1976), Koch (1999)) to derive the global coordi-
nates Pi and the unknown transformation parameters of
each station.

Ax = l+v (9)

The Jacobi matrix A can be divided by column-sorting
in a coordinate part AP and a part AT, which contains
the transformation parameters of each station. The lo-
cal coordinates of each station are given by the (re-
duced) observation vector l, the vector v contains the

observational errors, and the unknown parameters are
denoted by x =

(
xP xT,1 xT, j xT,k

)T.(
AP,1 AT,1 0 0
AP, j 0 AT, j 0
AP,k 0 0 AT,k

)( xP
xT,1
xT, j
xT,k

)
=

(
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lp, j
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)
+

(
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vp, j
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)
(10)

If available, prior results or additional GNSS observa-
tions xGNSS can be introduced to define the geodetic
datum of the network.(

AP AT
E 0

)(
xP
xT

)
=

(
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)
+

(
vp
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)
(11)

The stochastic model of this extended model reads(
Qp 0
0 QGNSS

)
. (12)

To restrict the number of estimated transformation pa-
rameters, e.g. to fix the scale parameter to m = 1 or
to rectify the defect of the normal equation matrix in
case of a free network adjustment, additional restric-
tions CTx = c can be applied (cf. Lösler and Eschel-
bach (2012))(

N C
CT 0

)−1(n
c

)
=

(
x
k

)
, (13)

where N = ATQ−1
ll A and n = ATQ−1

ll l are substitu-
tions, and k contains the Lagrange multipliers (e.g.
Koch (1999)). With Qkk = (CTN−1C)

−1 the variance-
covariance matrix Qxx of the unknown parameters x
are given by

Qxx = N−1−N−1CQkkCTN−1 (14)

2.2 Stochastic model

The stochastic model describes the a-prior uncertain-
ties of the measurement process and allows for com-
bining different types of observations w.r.t. their un-
certainties. In general, the uncertainties are a composi-
tion of various parameters and distributions (e.g. GUM
(2008a), GUM (2008b)).

The geometrically related parameters of the instru-
ment shown in Eq. 5 are equivalent for all observations.
In addition, each measurement can be considered as a
realization of a random experiment. Therefore, a tar-
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get centering error ζ , a resolution limiting error of the
digital output ξ , and a random error τ should be intro-
duced. Eqs. 2, 3 and 4 become

d̂ = (1+µ + τd)d +λ +ζd +ξd , (15)

Θ̂ = Θ + τΘ +ξΘ + ζΘ

d ρ +aΘ ,0+

+∑
nq
q=1(aΘ ,q cosqΘ +bΘ ,q sinqΘ),

(16)

Φ̂ = Φ + τΦ +ξΦ + ζΦ

d ρ +aΦ ,0+

+∑
nq
q=1(aΦ ,q cosqΦ +bΦ ,q sinqΦ),

(17)

where ρ = π

200 gon denotes the angle conversion factor
between radian and gon.

If forced centering or wooden tripods are used, the
uncertainties of the station Qp0 have to be taken into
account (Lösler and Eschelbach, 2012). The a-priori
variance-covariance matrix Qp of statically observed
coordinates p results by substituting Eq. 15, 16 and 17
in Eq. 5 and applying the propagation of uncertainty.

2.3 Systematic effects

During a measurement process several effects limit the
accuracy. Most of these effects are of random nature
but there are also systematic effects that distort the re-
sults unilaterally. For example, the laser beam of the
distance measurement unit is effected by meteorology
and a non-representative survey of the meteorological
parameters yields in systematic errors. Whereas this ef-
fect is well-known, the influence of misaligned glass
body reflectors is not. To avoid systematic lateral εlateral
and radial εradial errors, it is important to align the nor-
mal of the reflector surface to the line of sight (e.g.
Pauli (1969), Rüeger (1990)). The magnitude of the er-
rors caused by a misaligned reflector depends on the
reflector type, size and on the angle of incidence δ .

εradial = d
(

nr−
√

n2
r − sin2

δ

)
− e(1− cosδ ) (18)

εlateral = (d− e)sinδ −d secδG sin(δ −δG) (19)

where δG = arcsin sinδ

nr
. The distance between the front

surface of the prism and the center-symmetric point is
denoted by e, while d is the distance between the front

surface of the prism and the corner point of the triple
prism, and nr ≈ 1.52 represents the ratio of the group
refractive indices of glass and air (Rüeger (1990)).

The systematic errors depend on the angle of inci-
dence δ . Fig. 3 depicts the resulting systematic errors
for various reflector sizes. Even if small size glass body
reflectors yield in lower errors, these kind of reflectors
reflect only a small part of the instrument’s laser beam.
Due to the small spot size, the likelihood for measure-
ment failure is increased.
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Fig. 3 Radial and Lateral Deviations caused by Reflector Mis-
alignment for Precision Reflector GPH1P, Glass Ball Reflector
1.5′′ and 0.5′′.

During reference point determination, a misalign-
ment of the reflectors is unavoidable, because of the
rotation characteristic of the radio telescope. As shown
by (Lösler et al., 2013) the systematic errors can be
corrected for all radio telescope orientations. The re-
maining residual uncertainty is similar to the centering
error ζ and can be taken into account in the network
adjustment process (Lösler et al., 2015). Fig. 4 shows
a comparison of corrected and uncorrected spatial po-
sitions.

3 Conclusion

A proper and traceable uncertainty budgeting is im-
portant in order to archive reliable results. An incom-
plete stochastic model or an unrepresentative sample
of the population effects the estimated uncertainties
(cf. Hennes (2007), Xu (2013)). In most cases the re-
sults are too optimistic and the derived confidence in-
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Fig. 4 Comparison of Corrected and Uncorrected Spatial Posi-
tions (Lösler et al., 2015).

tervals do not reflect the true uncertainties. By using
common network adjustment tools, only a few un-
certainties can be taken into account. Following the
Guide to the Expression of Uncertainty in Measure-
ment (GUM) a coordinate-based network adjustment
is developed that includes a comprehensive uncertainty
budgeting.

Moreover, the use of spatial similarity transforma-
tions paves a simple way to provide local observations
in a global context like the ITRF. Whereas in conven-
tional approaches the ITRF-transformation process is
carried out as a final step, in our approach the transfor-
mation into the global reference frame takes place right
in the beginning of the bundle adjustment.
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