Measuring HI gas in 6 Lyman Break Analog

Ainil S. Abdullah

Supervisor : 1. Prof. H. Rottgering 2. Drs. R. van Weeren

YERAC 2010, Alcala de Henares

Outline

- Introduction : Lyman break technique
 - Why we study LBG?
 - properties of Lyman Break Galaxies
 - properties of Lyman Break Analog
- The project : data, object, status of my work

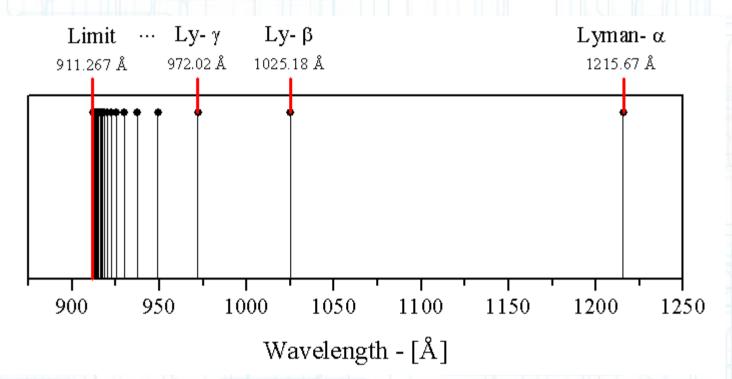
Introduction

Some questions on galaxy evolution :

How nowadays galaxies evolve from early universe galaxies?

- Do high-z galaxies differ from local? (mass, morphology, Star Formation Rates (SFR))
- How can we find galaxy at high z?

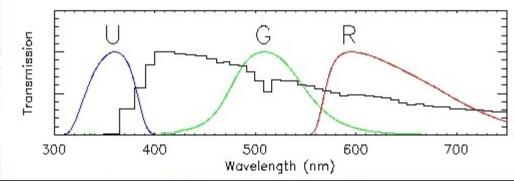
(Partridge and Peebles, 1967)

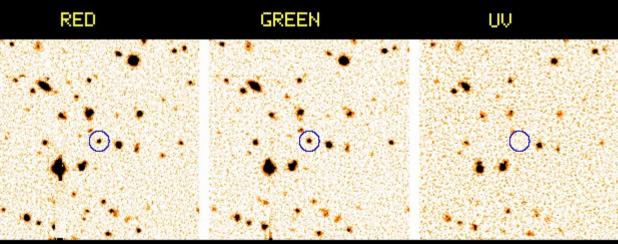

Direct Spectroscopy?, time consuming

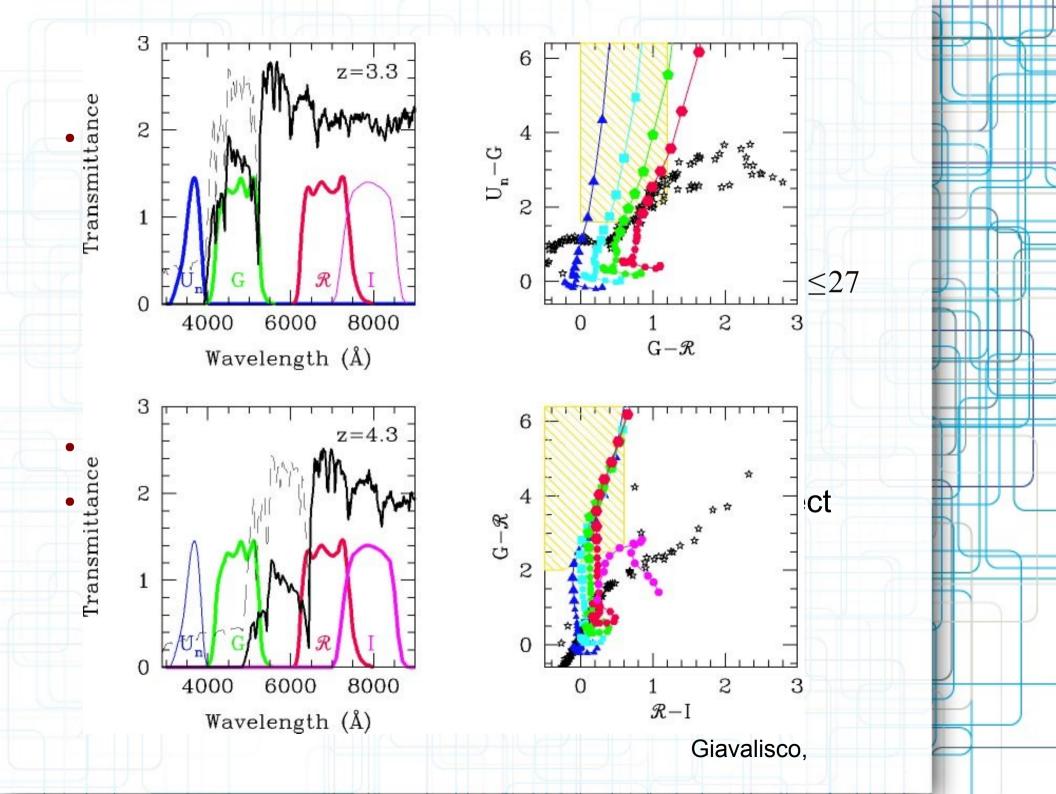
- Lyman Break technique (Steidel et al., 1999), use color selection (U,G,R) could efficiently save time (better telescope and CCD).
- LBG probes the galaxy evolution as far as 10% of universe age.

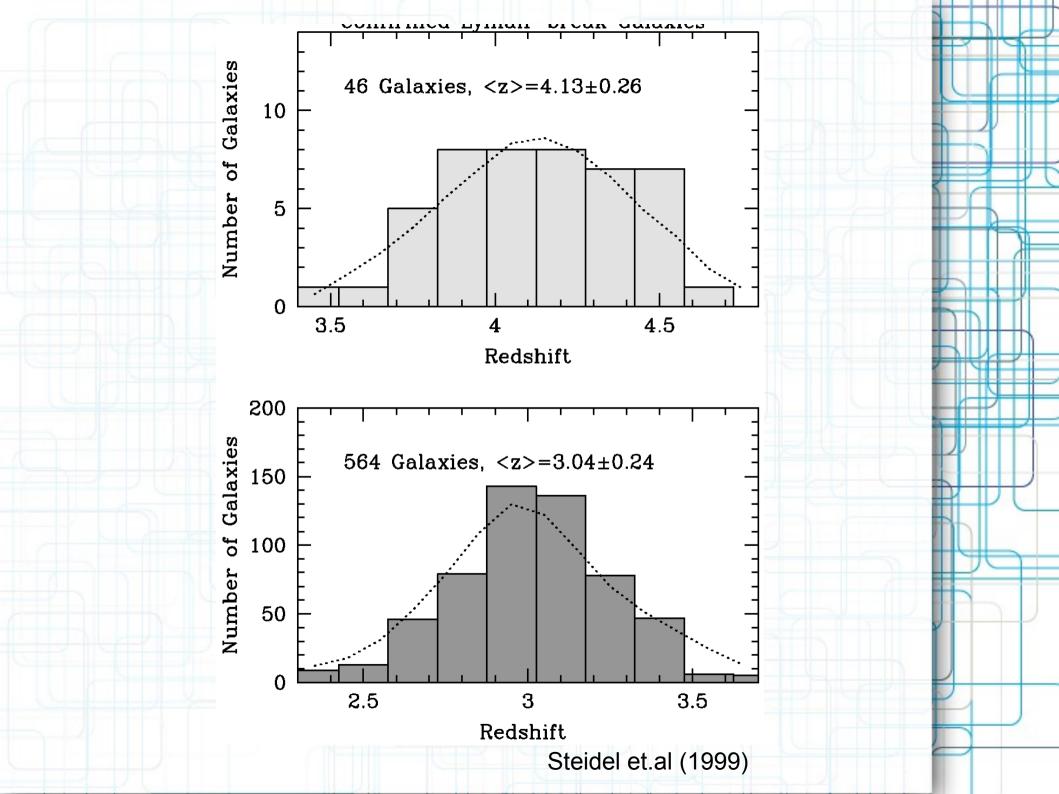
Lyman Limit

• What is Lyman break technique?

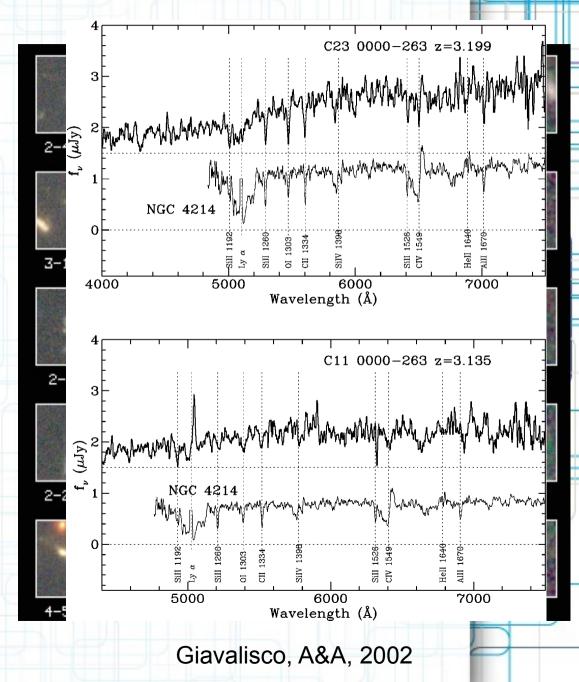

Taking the advantage of the nature of Lyman limit




• Galaxies are opaque for $\lambda < 91.2 nm$. Most photons are absorbed causing break at continuum bluer than 91.2 nm (Lyman break).


Lyman Break Technique

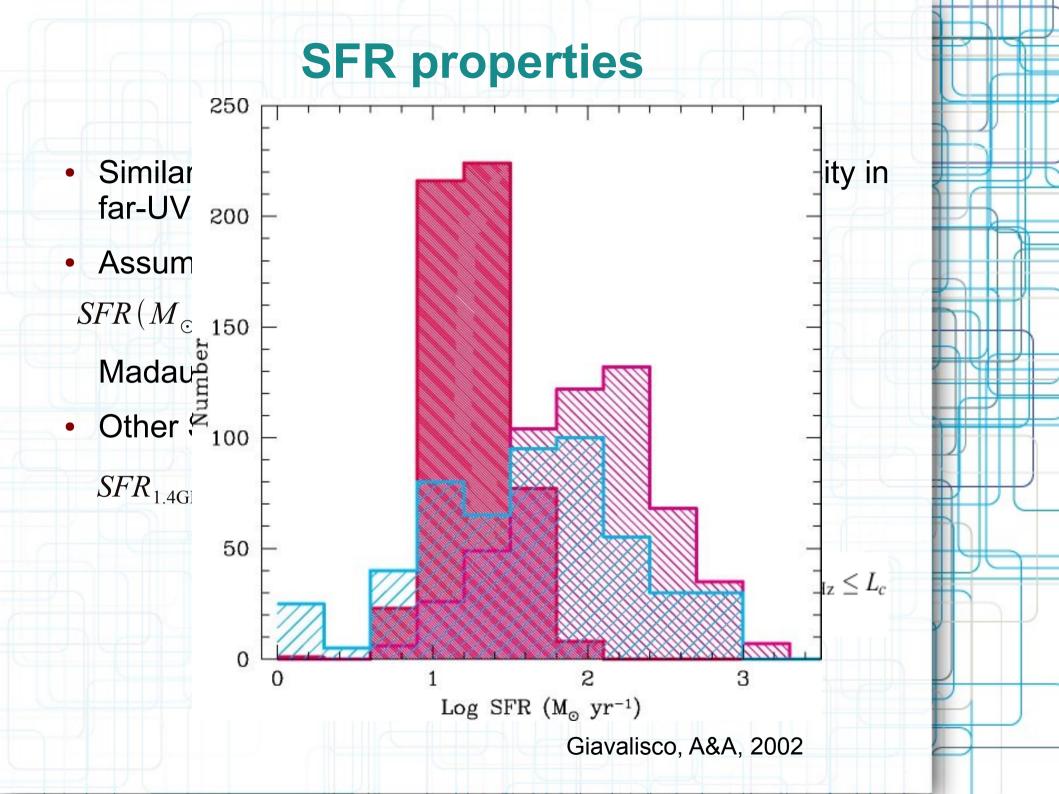
For high-z galaxies, this break move to longer λ
 z~3 galaxies, Lyman limit ~ 364.8 nm (U band)
 Z~3 galaxies show drop-out at U band



Morphology and Spectrum of LBG

- Broad range of shape :
 - Smaller, more compact, more irregular $(r_{1/2} \sim 0.7 - 1.5 \, kpc \, h^{-1})$ on optical and UV (Overzier et al. 2009)
- No clear Hubble type
- Close companion, tail, fragmented (merging?)
- Star formation sites? It seems that the underlying structure of galaxy is not clear

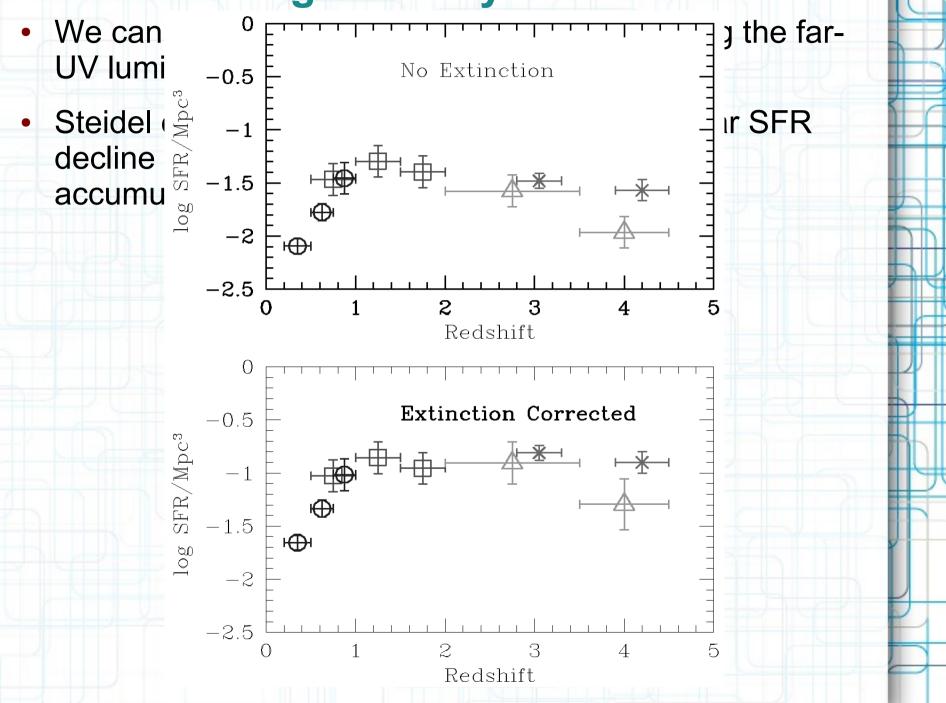
SFR properties


- Similar to local starburst galaxy with higher luminosity in far-UV
- Assuming constant SFR $SFR(M_{\odot} yr^{-1}) = 1.4 \times 10^{-28} L_{\nu(\lambda 1500)}$

Madau et.al (1998)

Other SFR indicator, not sensitive to dust

$$SFR_{1.4GHz}(M_{\odot}/yr) = \frac{L_{1.4GHz}}{2.72*10^{21}}, if L_{1.4GHz} > L_{c}$$


 $\frac{L_{1.4\text{GHz}}}{2.72 \times 10^{21} \left[0.1 + 0.9 (L_{1.4\text{GHz}}/L_c)^{0.3} \right]} \quad \text{if } L_{1.4\text{GHz}} \le L_c$

LBG tracing the early cosmic SFR?

- We can measure the SFR density by integrating the far-UV luminosity of LBGs
- Steidel et. al (1999), shows that there is no clear SFR decline up to z~4, but the observational data is accumulating.

LBG tracing the early cosmic SFR?

LBG tracing the early cosmic SFR?

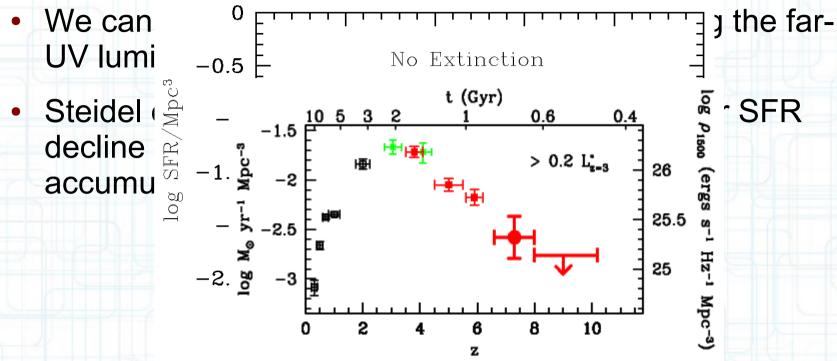


FIG. 8.— The present constraints on the UV luminosity density at $z \gtrsim 7$. At $z \sim 7$, this constraint is shown as a large solid red circle while at $z \sim 9$, it is shown as a 1σ upper limit (*red downward arrow*). These determinations are integrated to $0.2L_{z=3}^*$ to match the approximate faint limits on our $z \gtrsim 7$ galaxy searches. Also shown are the determinations of Schiminovich et al. (2005: open black squares), Steidel et al. (1999: green crosses), and Bouwens et al. (2007: solid red squares) integrated to the same flux limit.

SFR/Mpc³

 \log

-2

-2.5

Redshift

З

4

5

2

Why LBA?

- LBGs are faint and small much more difficult to observe
- If we can find local counterparts of high-z LBGs we can study them in great details.
- LBGs is less obscured than local starburst galaxy with the same SFR, maybe they undergo different mechanism?

Heckman et al. (2005) and Hoopes et al. (2007) find rare nearby (z < 0.3) population of galaxies with similar characteristic as LBGs in GALEX (compact UVLGS).

LBGs criteria is applied : $L_{FUV} \ge 10^{10.3} L \odot \wedge I_{FUV} \ge 10^9 L \odot kpc^{-2}$

• Study by Heckman et al. (2005) :

Why LBA?

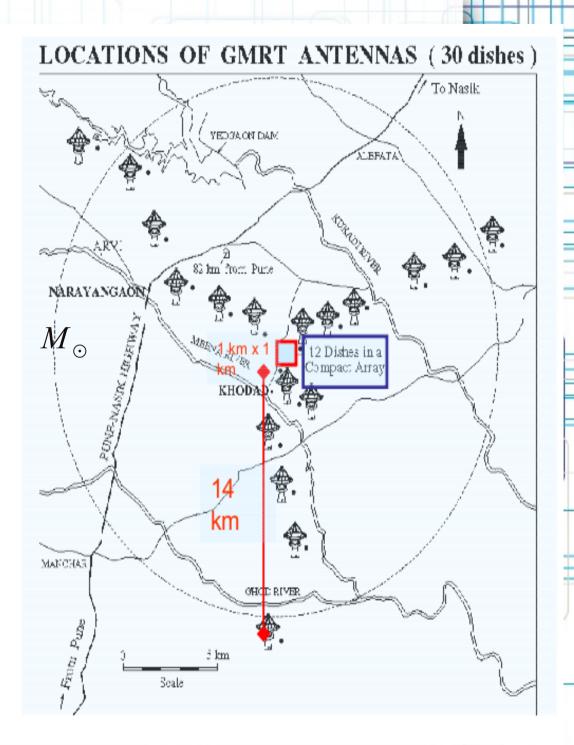
LBGs are faint and small —> much more difficult to observe

•	lf we	Su	TABLE 1 MMARY OF PROPER	TIES	
	stud	Parameter	Large UVLGs	Compact UVLGs	LBGs
•	LBG sam	$\frac{1}{\log L_{FUV} (L_{\odot}) \dots }$ $\log R_{\mathfrak{S}, \mathfrak{g}} (\mathrm{kpc}) \dots $	10.3–10.5 0.9–1.3	10.35–10.65 0.0–0.7	10.3–11.3 0.0–0.5
	Hec near	$\log I_{\text{FUV}} (L_{\odot} \text{ kpc}^{-2}) \dots \\ \log M_{*} (M_{\odot}) \dots \\ \log M_{\text{dyn}} (M_{\odot}) \dots \\ \dots $	6.9–7.8 10.5–11.3 10.4–11.6	8.2–9.8 9.5–10.7 10.0–10.8	9–10 9.5–11 10.0–10.5
	char LBG	$\log \mu_* (M_{\odot} \text{ kpc}^{-2}) \dots \dots$ $A_{\text{FUV}} (\text{mag}) \dots \dots \dots$	7.9–8.7 0.3–2.0	8.0–9.1 0.6–2.1	8.5–9.0 1–3
•	Stuc	log SFR $(M_{\odot} \text{ yr}^{-1})$ log (SFR/ M_{*}) (yr ⁻¹) FUV - r (AB mag)	0.6-1.2 -10.5 to -9.5 1.8-2.9	0.6–1.4 -9.8 to -8.6 0.6–2.1	0.5-2.5 -9 to -8 0.2-2.2
		D4000 $12 + \log (O/H)$ $\log \sigma_{gas} (\text{km s}^{-1})$	1.3-2.9 1.2-1.7 8.55-8.75 1.7-2.1	1.0-1.3 8.2-8.7 1.8-2.2	0.2-2.2 7.7-8.8 1.7-2.1

the

re

 $\supset kpc$


001009	001054	004054	005439	005527	015028
020356	02134B	032345	035733	0406508	080232
080144	6826(1	082550	Q[(3,7%)	092159	306590
192100	613690	102513	1133993	124819	135355
14341/	210358 -	214500	291412	232009	235397

 \clubsuit

+

- Latitude : 19 deg N
- Longitude : 74 deg E
- About 70 km N of Pune, 160 km E of Mumbai.

- 30 dishes; 45 m diameter
 - 12 dishes in central compact array
 - Remaining along 3 arms of Y-array
- Total extent : 14 km radius ⇒ resolution of a 28 km size antenna is achieved !

No.	Name	RA (J2000)	Dec (J2000)	Z	HI freq. (Mhz)
1.	005527	00h 55m 27.5s	-00° 21' 48.7"	0.167	1217.1
2.	015028	01h 50m 28.4s	13° 08' 58".4	0.147	1238.4
3.	032845	03h 28m 45.9s	01° 11' 50.8"	0.142	1243.8
4.	080844	08h 08m 44.3s	39° 48' 52.3"	0.091	1301.9
5.	093813	09h 38m 13.5s	54° 28' 24.9"	0.102	1288.9
6.	210358	21h 03m 58s	-07° 28' 02.5"	0.137	1249.3
ЛЛ			THAN I		F

				Ł		}
09381	1217.1	1238.4	1243.8	1301.9	1288.9	1249.3
080844	0.167	0.147	0.142	0.091	0.102	0.137
2845	-00° 21' 48.7"	13° 08' 58".4	01° 11' 50.8"	39° 48' 52.3"	54° 28' 24.9"	-07° 28' 02.5"
	0h 55m 27.5s	1h 50m 28.4s	3h 28m 45.9s	8h 08m 44.3s	9h 38m 13.5s	1h 03m 58s
015	005527	015028	032845	080844	093813	210358
005527	1. 10358 .			4.	5.	6.
	21			0	-	H

Status of the project

- Finishing primary calibration steps (using AIPS) :
 - set calibrator source (3C48, 3C147)
 - flagging bad data (RFI, dead antennas)
 - bandpass calibration
 - gain calibration
- Starting self-calibration
- The next step : make continuum image

(detecting companion, SFR)

- detecting HI

Summary

- LBG can be used to study evolution of high-z galaxies
- There are rare nearby Lyman break analog that has similar properties as LBGs that provide us with unique opportunity to study its evolution in great details

Thank you