Observations of Molecules in

Luminous Infrared Galaxies

Francesco Costagliola

CHALMER

Outline

- Luminous Infrared Galaxies
- Molecular emission as a diagnostic tool
- Examples:
 - Vibrationally excited HC₃N in NGC 4418
 - Molecular tracers of galactic evolution
- Current projects & Future work

Luminous IIR Galaxies

Sanders & Mirabel (1996)

- IR- Galaxies discovered by IRAS satellite (1980's)
- Emit most of their energy in the IR (8-1000 µm)
- Most galaxies with $L_{\rm B~o~l} > 10^{11} L_{\odot}$ are IRG
- LIRG: $L_{IR} > 10^{11} L_{\odot}$

Starburst or AGN?

- Observed IR luminosities require large amounts of dust heated by AGN or Starburst
- Deep mid-IR silicate absorption
- Dense (n>10⁵ cm⁻³), warm (T>100 K) molecular gas in the nuclear regions
- Highly obscured by dust
 - ⇒ direct investigation of central regions precluded at IR and optical wavelengths
- Nature of the energy source often unclear

Molecules as Tools

Molecules as Tools

abundances

Molecules as Tools **Environment** Chemistry **Excitation** collisions, radiation abundances density, radiation

PDRs, XDRs and Hot cores

PDRs, XIDRs and Hot cores

- Dominated by FUV from massive stars
- · Layered Structure:

$$C_+ {\longrightarrow} C {\longrightarrow} CO$$

$$H \rightarrow H_2$$

- · Mainly on cloud surfaces
- · Photoelectric heating
- $T \sim 1000 \text{ K}$, $n \sim 10^5 \text{ cm}^{-3}$
- · Ion-molecule reactions

Tielens & Hollenbach (1985), Meijerink & Spaans (2005)

PDRs, XDRs and Hot cores

- Dominated by X-rays from accreting BH
- High ionizationC, CO and C⁺ coexist
- · X-rays penetrate deep in the cloud volume (N<10²⁴ cm⁻²)

- Photoionization heating
- $T \sim 500 \text{ K}$, $n \sim 10^5 \text{ cm}^{-3}$
- · Ion-molecule reactions

Maloney et al. (1996), Meijerink & Spaans (2005)

PDRs, XDRs and Hot cores

- · Dense, warm regions around young stars
- $T \sim 300 \text{ K}, \text{ n} > 10^6 \text{ cm}^{-3}$
- Evaporation of molecules from grain surfaces
- Shielded from UV radiation (A_v>100 mag)
- · Formation of large organic molecules

Blake et al. (1987), Bayet et al. (2008)

The HCO+/HCN ratio

- · Kohno et al. (2001): HCO+/HCN ↑ in Starburst ↓ in AGN
- Lepp & Dalgarno (1996):HCN ↑ in XDRs
- · Meijerink et al. (2007) HCO⁺ ↑ in XDRs
 - \Rightarrow HCO⁺/HCN is an XDR tracer at n>10⁵ cm⁻³

The HINC/HCN ratio

- Main formation: $HCNH^+ + e^- \rightarrow \begin{cases} HCN + H & 50 \% \\ HNC + H & 50 \% \end{cases}$
- HNC destroyed by neutral-neutral reactions
 HNC + H → HCN + H, T > 30 K (Hirota et al., 1998)
- In the Galaxy: HNC/HCN ↓ as T ↑
- In many extragalactic objects HNC/HCN~1
- Meijerink & Spaans (2005): HNC/HCN>1 in XDRs HNC=HCN in PDRs

HC₃N

- Usually observed in Galactic hot cores (e.g., Rodriguez-Franco, 1998)
- Easily destroyed by UV radiation and reactions with C⁺ and He⁺ (e.g., Turner et al. 1998)
- Important formation routes:
 - Evaporation from grain mantles
 - $-C_2H_2 + CN \rightarrow HC_3N + H \text{ for T}>100 \text{ K}$
- Strongly connected with IR field via vibrations (Wyrowski et al., 1999, Paper I)

Polycyclic Aromatic Hydrocarbons

(PAH)

- · First observed as unidentified emission bands (3.3-11.2 µm)
- Planar molecules containing ~50 carbon atoms
- · Excited by UV radiation
- Destroyed by X-rays and hard UV (cannot survive at <1 kpc from AGN)
- Interpreted as tracers of star formation(e.g., Genzel et al., 1998)

Polycyclic Aromatic Hydrocarbons

(PAH)

- · First observed as unidentified emission bands (3.3-11.2 µm)
- Planar molecules containing ~ 50 carbon atoms
- · Excited by UV radiation
- Destroyed by X-rays and hard UV (cannot survive at <1 kpc from AGN)
- Interpreted as tracers of star formation(e.g., Genzel et al., 1998)

Polycyclic Aromatic Hydrocarbons

(PAH)

- · First observed as unidentified emission bands (3.3-11.2 µm)
- Planar molecules containing ~50 carbon atoms
- · Excited by UV radiation
- Destroyed by X-rays and hard UV (cannot survive at <1 kpc from AGN)
- · Interpreted as tracers of star formation (e.g., Genzel et al., 1998)

PAH vs Silicate Diagnostics

PAH vs Silicate Diagnostics

Example I

"Vibrationally excited HC₃N in NGC 4418"

F. Costagliola, S. Aalto, A&A, 2010

The LIRG NGC4418

- Edge-on, Sa-type
- $L_{IR} = 10^{11} L_{\odot}$
- Deep mid-IR silicate and ice absorption
- Energy source confined in the inner 80 pc: 85 K dust (Evans et al., 2003)
 6 cm continuum (Eales et al. 1990)
- Synchrotron-deficient (Nascent Starburst?)
- No 6.2 µm PAH emission
- Bright HC₃N 10-9 (Aalto et al., 2007)

Observations: 2007-2009

Observations: 2007-2009

JCMT, HAWAII

- Line Survey 90-360 GHz
- Detected 41 transitions of 11 Molecules
 - Bright, vibrationally excited HC₃N

(First extragalactic detection)

Excitation of HC₃N

Four different temperatures:

- •29 K for the low-J levels (E₁₁<100 K).
 - ⇒ collisions, extended gas ?
- •265 K for the high-J levels (E₁₁>100 K).
 - ⇒ radiation, collisions in a dense phase ?
- •91 K for the rotational transitions between v_7 =1 vibrationally excited levels.
 - ⇒ dense gas and dust at 85K in inner 0.5" (Evans, 2003)
- •519 K for vibrational transitions of the J=25-24 level.
 - ⇒ radiation from embedded source ?

Example III

"Molecules as Tracers of Galactic Evolution: an EMIR Survey"

F. Costagliola, S. Aalto, M. Rodriguez and the EVOLUTION team

...to be submitted to A&A (soon!)

Motivation of the Study

- Can molecular observations trace galactic evolution?
- Can molecular observations distinguish between Starburst and AGN-dominated objects?
- How are molecular abundances related to other tracers at different wavelengths?

The Sample

- Observed 23 galaxies
- Source selection criteria:
 - Uniform coverage of the
 classes from Spoon (2007) §
 - Uniform representation of different galaxy types
- Observed bands:88 and 112 GHz

Observed Bands

Observed Bands

Stars: Starburst; Triangles: AGN; Squares: LIRG; Circles: HC₃N

Diagnostic Diagrams

Starbursts: faint HNC and bright HCO⁺

LIRG/AGN: bright HNC faint HCO⁺

HC₃N detected where HCO+/HCN<1

Low HNC/HCO⁺ in Starbursts with large PAH EW

Stars: Starburst; Triangles: AGN; Squares: LIRG; Circles: HC₃N

Is HCO+/HCN driven by XIDR chemistry?

- Consistent with obs. by Kohno et al. (2001): HCO+/HCN ↓ in AGN
- Models by Meijerink et al. (2007): HCO+/HCN ↓ in dense PDRs
- HC₃N detected in galaxies with

AGN-like HCO+/HCN

- \Rightarrow how can HC_3N survive?
- Blake et al. (1987) in Orion: HCO+/HCN ↓ in hot cores
- A density effect ? HCO+ can be excited at n<10⁵ cm⁻³
 - ⇒ different volume filling?

Current Projects

• The rich chemistry of NGC 4418:

Chemical and NLTE modeling of molecular emission observed in the LIRG NGC 4418

• Extragalactic H₃O⁺

NLTE modeling of JCMT observations of H_3O^+ in different galaxy types

Future Directions

- Interferometric observations to resolve spatial distribution of chemical tracers (e.g. HC_3N in AGN) \Rightarrow ALMA
- Sub-mm observations of high-J transitions of CO
 (XDR tracers) ⇒ Herschel
- More sensitive instruments to detect less abundant chemical tracers (e.g., CH_3OH) \Rightarrow ALMA
- Chemical modeling of HC₃N in extreme environments
- Multi-transition studies, to constrain molecular excitation
 - ⇒ 1 mm EMIR observations in the Evolution sample

Summary

- LIRGs important to understand star formation history of the Universe, but often power source is unclear (Starburst or AGN?)
- Molecular observations can help to constrain properties of central regions in LIRGs
- Example I: Vibrationally excited HC₃N in NGC 4418
 - _ High abundance and excitation (∼ Galactic hot cores)
 - _ Possible evidence of a compact source
- Example II: Molecular tracers of galactic evolution
 - _ HC₃N detections challenge standard interpretation of HCO⁺/HCN
 - _ HNC/HCN<0.5 not reproduced by PDR models (mech. heating??)
- More observations and modeling needed (new facilities, chem. models)

Current Projects

Rich Chemistry in NGC 4418

Observed 1 mm, 2 mm and 3 mm transitions of CO, 13CO, CS, HCN, HNC, HCO+, SiO, H2CO and HC₃N

Population diagrams

Rotational diagram for NGC4418

Radiative transfer modeling

Chemical Modeling

Extragalactic H₃0+

In February 2008 we detected the 3^+_2 – 2^-_2 line of H3O+ at 364.797 GHz in IC 342, NGC 1068, NGC 253, NGC 4418, and NGC 6240 with the JCMT telescope.

Radex modeling

