MeerKAT Simulation Studies Bradley Frank ¹, Debra Shepherd ², Erwin de Blok ¹

¹ Astrophysics, Cosmology and Gravitation Centre, UCT ² NRAO, SKA-SA

Overview

"MeerKAT is South Africa's 1% SKA demonstrator interferometer. The 80 dish telescope is designed to be a versatile instrument ideal for a wide range of science cases. I will provide some insights into the configuration design and the simulation study currently being started. From a scientific perspective, I will also provide an overview of some of the large HI science cases that are being planned for MeerKAT, as well as some results from my current work in the comparison of HI and CO dynamics of local galaxies."

Overview

- MeerKAT Configuration
 - Background
 - Current Status
- Performance Simulations
 - Point Sources
 - Extended Emission

MeerKAT

Number of dishes ^a	80 (central array)			Dhasa 1	Dhasa 0	Dhasa 0	Dhaaa 4
			KAI-7	Phase I	Phase 2	Phase 3	Phase 4
	+ / (spur)		2010	2013	2014	2015	2016
Dish diameter	12 m	Number of dishes	7	80	80	87	87
Aperture efficiency	0.7	Low freq. range (GHz)	1.2–1.95	0.9–1.75	0.9–1.75	0.9–1.75	0.58–2.5
System temperature	30 K	High freq. range (GHz)	_		8–14.5	8–14.5	8–14.5
Low frequency range ^a	0.58–2.5 GHz	Maximum processed					
High frequency range ^{a}	8–14 5 GHz	bandwidth (GHz)	0.256	0.850	2	2	4
Field of view	1 deg^2 at $1 4 \text{ GHz}$	Min. baseline (m)	20	20	20	20	20
	$6 dog^2 at 590 MHz$	Max. baseline (km)	0.2	8	8	60	60
	0 deg at $300 WHz$				00000		0-0-0-0-0
· · · ·							
A_e/I_{sys}	200 m²/K						
Continuum imaging dynamic range ^b	1:10 ⁵						
Spectral dynamic range ^b	1:10 ⁵						
Instrumental linear							
polarisation purity	-25 dB across field						
Minimum and maximum bandwidth							
per polarization ^a	8 MHz–4 GHz						
Number of channels	16384						
Minimum sample time	0.1 ms						
Minimum baseline	20 m						
Maximum baseline	8 km (without spur)	Mag	nrl/A	TD			
	60 km (with spur)						

Justin Jonas

- MeerKAT RFP
- 80 x 12m Dishes
- 2 Gaussian Components
 - 56 Dishes in $\sigma_{inner} = 300m$
 - 24 Dishes in $\sigma_{outer} = 2500m$
- Optimized for 8hr, $\delta = -30^{\circ}$ pointing
- Used Weighted PSS as Measure of Imaging Performance

MeerKAT V3.6

MeerKAT V3.6

MeerKAT V3.6, 64-Dish

Sensitivities

MeerKAT V1 and V3.6

MeerKAT V1 and V3.6

Assumed that we can image by weighting

 Used weighted sensitivity as a measure of imaging fidelity - how valid is this?

Have we managed to suppress sidelobes?

Simulation Studies

- In Support of Science Cases and Commissioning
- Uses CASA's simdata2 simulation task (hacked a little)

Simulations

- 10 Point Sources across FoV, Single Channel, Zenith Snapshot
- NGC628 Clean Component Model (THINGS)
 - 58 Channel, 1.4GHz, $\Delta v = 12$ kHz, Fitted across 0.5° x 0.5°, 8hr, $\delta = -30^{\circ}$

Simulation Studies

- In Support of Science Cases and Commissioning
- Uses CASA's simulate simulation task (hacked a little)
- Simulations
 - 10 Point Sources across FoV, Single Channel, Zenith Snapshot
 - NGC628 Clean Component Model (THINGS)

58 Channel, 1.4GHz, Δν = 12kHz, Fitted across
0.5° x 0.5°, 8hr, δ=-30°

Point Sources

Point Sources

Point Sources

Simulation Studies

- In Support of Science Cases and Commissioning
- Uses CASA's simdata2 simulation task (hacked a little)
- Simulations
 - 10 Point Sources across FoV, Single Channel, Zenith Snapshot
 - NGC628 Clean Component Model (THINGS)

• 58 Channel, 1.4GHz, $\Delta v = 12$ kHz, Fitted across 0.5° x 0.5°, 8hr, $\delta = -30^{\circ}$

NGC628

NGC628

Results

FLAT Cleaned Image Briggs Robustness = 0 N_{iter}(max) = 1000

<u>Abs. Diff.</u> abs[Input - Cleaned]

Fidelity Input max[difference, 0.7*rms(difference)]

(Jy/beam)

×10⁻³

MeerKAT V3.6

00"00"46"

54'

57

06

-30°00-0.3

MeerKAT 64-Dish

RA Offset (arcsec)

18" 00"

22000 Fight Ascension

23'59"30

00"00"46"

54' 57'

-30⁴00

03

09

Comparisons

MeerKAT V1

MeerKAT V3.6

MeerKAT-64

(Jy/beam

Comparisons N628 Model

MeerKAT V1

(Jy/beam)

Moving Forward...

- Use S³ for Model Inputs for Deep HI and Continuum
- More Imaging Simulations
- Noisify (only works properly for ALMA)
- Import MeerKAT Specs into CASA
- Release Documentation and Use Cases to Local Community (end of 2010)

Moving Forward...

- First Light Spectral Line Imaging with MeerKAT Demonstrator KAT-7 (2011)
 - Commissioning later this year
- Independent Scientific Component
 - Comparisons of CO and HI Dynamics of THINGS Galaxies
- Member of SKA-SA Configurations Working Group, consultant slave at MeerKAT Project Office

