



Low frequency observations of diffuse radio emission in clusters of galaxies

Giulia Macario Dipartimento di Astronomia, University of Bologna INAF-IRA Bologna

Ph.D. advisors: L. Gregorini (UniBo); T. Venturi, G. Brunetti (IRA) Main Collaborators: D. Dallacasa, R. Cassano (IRA); S. Giacintucci, M. Markevitch (Harvard-CFA)

YERAC 2010 - Alcala' de Henares, July 8 2010

## Cralaxy clusters

#### Largest gravitationally bound systems in the Universe, Mpc scale



The "Bullet" cluster Credits: M. Markevitch

Galaxies: ~5% (optical)
Dense and hot ICM: ~15% (X)
Dark matter: ~80%



Borgani et al. 2004

Clusters form by accretion of matter and mergers between sub-units at the intersection of filaments of the "cosmic web"

## CLUSEEr Mergers



A399-A401-about to merge A754-major merger A2029-relaxed (few Gyrs)

Observational evidences of mergers from the thermal component:

X-ray : substructures in the ICM distribution, gradients in SB and T
 Optical : substructures in galaxy distributions

### CLUSEEr Mergers

Cluster mergers are among the most energetic events in the Universe: major merger energy release: > 10^64 ergs over 1 Gyr

shocks and turbulence





amplify the cluster magnetic fields accelerate particles from the thermal ICM re-accelerate pre-existing relativistic particles

Mpc-scale non-thermal (synchrotron) radio emission, observed in a fraction of merging cluster

#### Mergers and diffuse radio emission



**Radio Relics**: cluster outskirts, elongated, polarized up to ~30%

**Radio Halos**: centrally located, regular shape, usually unpolarized

**Mpc scale** sources, **NOT** associated with individual galaxies, but with the ICM Probes the existence of GeV electron population and muG magnetic fields Low SB, steep synchrotron spectra ( $\alpha \sim 1.2-1.4$ ). Only  $\sim 50$  known (poor statistic)

#### Origin of halos and relics



> i.e. 1 Mpc @ z=0.2: 9.5 Gyr >> 0.1 Gyr



Abell 3376 (Bagchi et al. 2006)

Coma cluster (Feretti et al. 1998)

#### Some form of (re-)acceleration is needed

Primary electron models: in situ re-acceleration of pre-existing electrons by merger shocks/ turbulence, first proposed by Jaffe (1977) Secondary electron models: relativistic electrons injected in the cluster volume via pth-pcr collisions, first proposed by Dennison (1980)

#### Origin of halos and relics



#### **Radio Relics**

Origin: merger shock (re-)acceleration of relativistic electrons or shock adiabatic compression of fossil radio plasma? e.g. Ensslin et al. 1998; Rottgering et al. 1997; Ensslin & Gopal-Krishna 2001

#### Radio Halos

Origin: a promising possibility is in situ re-acceleration of preexisting relativistic electrons by **merger** driven **<u>turbulence</u>** 

e.g., Brunetti et al. 2001, 2004; Petrosian 2001

# The re-acceleration model and USSRHs

A unique expectation of this model is the existence of Ultra-steep spectrum radio halos (USSRHs, α>1.6), due to less energetic mergers
 Low frequencies => easier to find, expected to be more numerous (i.e. Cassano & Brunetti 2005; Cassano, Brunetti & Setti 2006, Cassano+ 2008)



Relic: shock acceleration? (Giacintucci, Venturi, Macario+ 2008)

prototypical USSRH -> turbulence re-acceleration (Brunetti+ 2008, Nature)

GMRT 240 MHz on Chandra Brunetti+ 2008, Nature

#### Why Low Frequencies?

- Low frequency (<330 MHz) observations well suited to study such steep spectrum radio sources
- most observations of halos/relics @ 1.4 GHz (surveys, individual); only few object with spectral information
- to shed light on the scenarios proposed for their origin. In particular, discovery of new USSRHs would constrain the reacceleration scenario.

Ph.D. project: GMRT low frequency (<327 MHz) follow up of RH/ relics/candidates in clusters selected from GMRT RHSurvey (Venturi et al. 2007&2008; Venturi et al. 2009)

✓ GMRT (Giant Meterwave Radio Telescope) is well suited for RH/relic studies: low freq., good sensitivity both at compact and extended emission



#### I. Abell 697

II. Abell 754



## "The very sleep spectrum radio halo in Abell 697"

(Macario et al. 2010, in press A&A, arXiv:1004.1515)

10

## Abell 697: a merging cluster with a giant RH

massive, X-ray luminous cluster
evidences of merger activity (optical/X-ray, Girardi+ 2006, Dhale+ 2002)

| $RA_{J2000}$         | 08h 42m 53.3s                               |
|----------------------|---------------------------------------------|
| DEC <sub>J2000</sub> | +36° 20′ 12″                                |
| Bautz-Morgan Class   | II–III                                      |
| Richness             | 1                                           |
| Z                    | 0.282                                       |
| $\sigma_v$           | $1334 \text{ km s}^{-1}$ (a)                |
| $L_{X[0.1-2.4keV]}$  | $10.57 \times 10^{44} \text{ erg s}^{-1}$   |
| M <sub>V</sub>       | $2.25 \times 10^{15} \text{ M}_{\odot}$ (b) |
| R <sub>V</sub>       | 2.90 Mpc (b)                                |

- Host a central giant radio halo:

hints from WENSS (Kempner&Sarazin2001),
 confirmed by GMRT observations @610 MHz
 (GMRT RHSurvey, Venturi+ 2007&2008)



## Abell 697: observations

New high sensitivity **GMRT** follow up observations @ 327 MHz (8 h)



GMRT 327 MHz f.r. 10"x9" on DSS; rms ~45  $\mu$ Jy/b; 3 $\sigma$  f.c.

327 MHz cont., 47"x41" (rms ~150 µJy/b) on 610 MHz image (grey, rms ~50 µJy/b), point sources subtracted, 3σ f.c.

> much brighter and larger @327 MHz

### Abell 697: observations

New high sensitivity **GMRT** follow up observations @ 327 MHz (8 h)



VLA 1350 MHz, 35"x35", rms ~25 μJy/b, 3σ f.c.



GMRT 327 MHz f.r. 10"x9" on DSS; rms ~45 μJy/b; 3σ f.c.

327 MHz cont., 47"x41" (rms ~150 µJy/b) on 610 MHz image (grey, rms ~50 µJy/b), point sources subtracted, 3σ f.c.

archive VLA-C obs. (50 min)

much brighter and larger @327 MHz

Flux density measurements @ 327, 610
and 1350 MHz
> observed integrated spectrum

| v<br>(MHz) | $S_{\nu}$<br>(mJy) | HPBW<br>"×"        |
|------------|--------------------|--------------------|
| 325        | 47.3±2.5           | $46.8 \times 41.4$ |
| 610        | $14.6 \pm 1.7$     | $46.4 \times 35.9$ |
| 1400       | $3.7 \pm 0.2$      | $35.0 \times 35.0$ |

Flux density measurements @ 327, 610
 and 1350 MHz
 **observed integrated spectrum**

 Injection of "Fake radio halos" to estimate GMRT flux density losses and constrain the spectral steepness

~20% losses => "revised" spectrum

| v<br>(MHz) | $S_{\nu}$<br>(mJy)   | HPBW<br>"×"                              |
|------------|----------------------|------------------------------------------|
| 325        | 47.3±2.5<br>14.6+1.7 | $46.8 \times 41.4$<br>$46.4 \times 35.9$ |
| 1400       | $3.7 \pm 0.2$        | $35.0 \times 35.0$                       |



Flux density measurements @ 327, 610
and 1350 MHz **observed integrated spectrum**

 Injection of "Fake radio halos" to estimate GMRT flux density losses and constrain the spectral steepness

~20% losses => "revised" spectrum

| v<br>(MHz) | $S_{\nu}$<br>(mJy) | HPBW<br>"×"        |
|------------|--------------------|--------------------|
| 325        | 47.3±2.5           | $46.8 \times 41.4$ |
| 610        | $14.6 \pm 1.7$     | $46.4 \times 35.9$ |
| 1400       | $3.7 \pm 0.2$      | $35.0 \times 35.0$ |



Flux density measurements @ 327, 610
and 1350 MHz **observed integrated spectrum**

 $\begin{array}{c|cccc} \nu & S_{\nu} & HPBW \\ (MHz) & (mJy) & ''\times'' \\ \hline 325 & 47.3 {\pm} 2.5 & 46.8 {\times} 41.4 \\ 610 & 14.6 {\pm} 1.7 & 46.4 {\times} 35.9 \\ 1400 & 3.7 {\pm} 0.2 & 35.0 {\times} 35.0 \\ \hline \end{array}$ 

 Injection of "Fake radio halos" to estimate GMRT flux density losses and constrain the spectral steepness



~20% losses => "revised" spectrum

A697 hosts another example of USSRHs (like A521)



Giant RH LLS = 1.3 Mpc @327 Morphology similar to X-ray SB distribution Chandra archive re-analysis favours a multiple merger scenario => merger-halo connection

327 MHz low res. contours on Chandra 0.5-9 keV (colours)



Giant RH LLS = 1.3 Mpc @327 Morphology similar to X-ray SB distribution Chandra archive re-analysis favours a multiple merger scenario => merger-halo connection

327 MHz low res. contours on Chandra 0.5-9 keV (colours)

theoretical implications of the very steep spectrum:
unique expectation of the re-acceleration model
hadronic (secondary) origin of the halo is disfavored! It would required an implausibly high p energy budget.





Giant RH LLS = 1.3 Mpc @327 Morphology similar to X-ray SB distribution Chandra archive re-analysis favours a multiple merger scenario => merger-halo connection

327 MHz low res. contours on Chandra 0.5-9 keV (colours)

theoretical implications of the very steep spectrum:

unique expectation of the re-acceleration model

- hadronic (secondary) origin of the halo is **disfavored**! It would required an implausibly high p energy budget.

these results provide further support to the turbulence re-acceleration scenario for the origin of radio halos



 $r B_{o}(\mu G)$ ]

### II "The shock front and the radio edge in the merging cluster Abell 754"

work in progress: Macario et al., to be submitted to ApJ

## Abell 754: the prototype of a major merger

- nearby (z=0.05) hot, merging cluster

X -RAY (i.e. Henry & Briel 1995, Markevitch+
 2003, Henry+ 2004) and optical (Fabricant+ 1986,
 Zabludoff & Zaritzki 1995)

## Abell 754: the prototype of a major merger

- nearby (z=0.05) hot, merging cluster

X -RAY (i.e. Henry & Briel 1995, Markevitch+
 2003, Henry+ 2004) and optical (Fabricant+ 1986,
 Zabludoff & Zaritzki 1995)

-2 (or more) sub-clusters merging along W-E axis
- possible presence of a shock front (Krivonos+
2003, Henry+ 2004)



Chandra T map + ACIS 0.8-5 keV cont. (Markevitch+ 03)

## Abell 754: the prototype of a major merger

- nearby (z=0.05) hot, merging cluster

X -RAY (i.e. Henry & Briel 1995, Markevitch+
 2003, Henry+ 2004) and optical (Fabricant+ 1986,
 Zabludoff & Zaritzki 1995)

-2 (or more) sub-clusters merging along W-E axis
- possible presence of a shock front (Krivonos+
2003, Henry+ 2004)

RADIO (Kassim+ 2001, Bacchi+ 2003, Kale+ 2009)





## Abell 754: observations

#### X-ray Chandra

Deep 95 ks (10743 obs)
Arch. 39 ks (577 obs)



Surface brightness profile
Spectral analysis=>T

#### Radio

GMRT 327 MHz, ~3 h
Arch. VLA-D 1.4 GHz
+ 74 MHz image (Kassim+ 2001)



GMRT 327 MHz, Full res.

GMRT 327 MHz, ow res., sources subtracted

Integrated radio spectrum of the diffuse emission

The shock front



Combined Chandra 95+39 ks, 0.5-4 keV

The shock front



Combined Chandra 95+39 ks, 0.5-4 keV

The shock front



The shock tronk



327 MHz low res. contours on Chandra 0.5-4 keV





andra 0.5–4 keV 327 MHz cont. on 1.4 GHz image; green Kassim relic





andra 0.5-4 keV 327 MHz cont. on 1.4 GHz image; green Kassim relic



andra 0.5–4 keV 327 MHz cont. on 1.4 GHz image; green Kassim relic



327 MHz data show diffuse radio edge coincident with  $\alpha_{\sim}2$  the shock

steep spectrum source its origin may be related to the shock passage (shock reacceleration, adiabatic compression)

1000

## summary and future work

1. Discovery of the very steep spectrum radio halo in A697. Strong support to the turbulence re-acceleration scenario for the origin of radio halos.

 to constrain the spectrum: follow up study @ 150 MHz (GMRT) and 1.4–1.8 GHz (EVLA-D) in progress

 Unambiguous detection of the merger shock front in A754; a radio edge with steep spectrum coincident with the front suggest that its origin is likely related to the shock passage.

- new deep GMRT obs. at 150, 240, 327 MHz just required

# summary and future work

1. Discovery of the very steep spectrum radio halo in A697. Strong support to the turbulence re-acceleration scenario for the origin of radio halos.

- to constrain the spectrum: follow up study @ 150 MHz (GMRT) and 1.4-1.8 GHz (EVLA-D) in progress

2. Unambiguous detection of the merger shock front in A754; a radio edge with steep spectrum coincident with the front suggest that its origin is likely related to the shock passage.

- new deep GMRT obs. at 150, 240, 327 MHz just required

GMRT low frequency follow up of clusters with diffuse halo/relic (or candidate) emission from the GMRT RH survey is ongoing

## Summary and future work

1. Discovery of the very steep spectrum radio halo in A697. Strong support to the turbulence re-acceleration scenario for the origin of radio halos.

 to constrain the spectrum: follow up study @ 150 MHz (GMRT) and 1.4–1.8 GHz (EVLA-D) in progress

2. Unambiguous detection of the merger shock front in A754; a radio edge with steep spectrum coincident with the front suggest that its origin is likely related to the shock passage.

- new deep GMRT obs. at 150, 240, 327 MHz just required

GMRT low frequency follow up of clusters with diffuse halo/relic (or candidate) emission from the GMRT RH survey is ongoing

Involved in the LOFAR survey key project (clusters WG)... LOFAR is the future!

#### Thanks...for being patient!